• 제목/요약/키워드: IRMPD spectroscopy

검색결과 2건 처리시간 0.018초

Infrared Multiphoton Dissociation Spectroscopy of Protonated 1,2-Diaminoethane-water Clusters: Vibrational Assignment via the MP2 Method

  • Boo, Bong Hyun;Kang, Sukmin;Furuya, Ari;Judai, Ken;Nishi, Nobuyuki
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3327-3334
    • /
    • 2013
  • Infrared multiphoton dissociation (IRMPD) spectra of various protonated 1,2-diaminoethane-water clusters DAE-$H^+-(H_2O)_n$ (n = 1-6) were measured in the wavelength range of 3000-3800 $cm^{-1}$. The IRMPD spectra of the well separated ionic clusters were simulated by the MP2 method employing various basis sets. Comparison of the IRMPD spectra with the theory indicates that each cluster may exist as several low-lying conformers, and the sum spectra of the various conformers reveal almost one to one correspondence between theory and experiment. Free N-H and O-H stretches are observed in the ranges of 3400-3500 and 3600-3800 $cm^{-1}$, respectively. The $O-H{\cdots}N$ and $N-H{\cdots}O$ stretches are, however, observed in the broad region of 3000-3600 $cm^{-1}$. The theoretical calculations on DAE-$H^+-(H_2O)_n$ (n = 1-4) show gradual decrease of the average binding energy between DAE-$H^+$ and $H_2O$ as the cluster size increases, attaining the lowest value of 55 kJ/mol when n = 4. We found a low energy barrier of 21 kJ/mol to the isomerization converting the lowest energy cluster of DAE-$H^+-(H_2O)_n$ to the second lowest one.

Looking through the Mass-to-Charge Ratio: Past, Present and Future Perspectives

  • Shin, Seung Koo
    • Mass Spectrometry Letters
    • /
    • 제12권4호
    • /
    • pp.126-130
    • /
    • 2021
  • The mass spectrometry (MS) provides the mass-to-charge ratios of atoms, molecules, stable/metastable complexes, and their fragments. I have taken a long journey with MS to address outstanding issues and problems by experiments and theory and gain insights into underlying principles in chemistry. By looking through the mass-to-charge ratio, I have studied thermochemical problems in silicon chemistry, the infrared multiphoton dissociation spectroscopy of organometallic intermediates, unimolecular dissociations of halotoluene radical cations, and the kinetics of association/dissociation of alkali halide triple ions with Lewis bases. Various MS platforms have been used to characterize non-covalent interactions between porphyrins and fullerenes and those between the group IIB ions and trioctylchalcogenides, and to examine the binding of the group IA, IIA and porphyrin ions to G-quadruplex DNA. Recently, I have focused on mass-balanced H/D isotope dipeptide tags for MS-based quantitative proteomics, a simple chemical modification method for MS-based lipase assay, and the kinetics and dynamics of energy-variable collision-induced dissociation of chemically modified peptides. Now, I see an important role of MS in global issues in the post-COVID era, as the society demands high standards for indoor air quality to contain the airborne-pathogen transmission as well as in-situ monitoring and tracking of carbon emissions to reduce global warming.