• Title/Summary/Keyword: IR thermal image

Search Result 65, Processing Time 0.024 seconds

Non-isothermal Crystallization Behaviors of Ethylene-Tetrafluoroethylene Copolymer (에틸렌-테트라플르오르에틸렌 공중합체의 비등온 결정화 거동)

  • Lee, Jaehun;Kim, Hyokap;Kan, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.803-809
    • /
    • 2012
  • The non-isothermal crystallization behavior of ethylene-tetrafluoroethylene (ETFE) copolymer was investigated by DSC and imaging FTIR analysis. Modified non-isothermal Avrami analysis was applied to interpret the crystallization behavior of ETFE. It was found that the less linearity in ln[-ln(1-X(t))] vs. ln(t) plot was obtained in thermal analysis comparison with imaging FTIR due to relatively small crystallization enthalpy change in ETFE. It means that imaging FTIR measured by overall IR absorption intensity change due to the crystallization was found to be effective to understand the non-isothermal crystallization kinetics of ETFE. In addition, the optical transmittance of ETFE was studied. The crystallite developed by slow cooling caused the light scattering and resulted in the increase of haze and the lowering of transmittance up to 8%. From our results, it was confirmed that cooling rate is an important processing parameter for maintaining optical transmittance of ETFE as a replacement material for glass.

Fabrication and Evaluation of Chalcogenide Glass for Molding (몰드성형용 GeSbSe계 칼코게나이드 유리 제작 및 특성 분석)

  • Park, Heung-Su;Cha, Du-Hwan;Kim, Hye-Jeong;Kim, Jeong-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.135-139
    • /
    • 2012
  • In this study, we synthesized the chalcogenide glass($Ge_{19}Sb_{23}Se_{58}$) for infrared optics by meltquenching method and verified the effect of cooling condition on the glass properties. The structural and optical properties of the glass were analyzed by XRD, FT-IR and SEM image. The glass synthesized under the cooling temperature of $980^{\circ}C$ shows transmittance of 58% at $8\sim12{\mu}m$, which was decreased as the cooling temperature was decreased. In addition, thermal and hardness also were measured. From the analysis results, we ascertained the feasibility as a molding materials for infrared optics.

The Classifications using by the Merged Imagery from SPOT and LANDSAT

  • Kang, In-Joon;Choi, Hyun;Kim, Hong-Tae;Lee, Jun-Seok;Choi, Chul-Ung
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.262-266
    • /
    • 1999
  • Several commercial companies that plan to provide improved panchromatic and/or multi-spectral remote sensor data in the near future are suggesting that merge datasets will be of significant value. This study evaluated the utility of one major merging process-process components analysis and its inverse. The 6 bands of 30$\times$30m Landsat TM data and the 10$\times$l0m SPOT panchromatic data were used to create a new 10$\times$10m merged data file. For the image classification, 6 bands that is 1st, 2nd, 3rd, 4th, 5th and 7th band may be used in conjunction with supervised classification algorithms except band 6. One of the 7 bands is Band 6 that records thermal IR energy and is rarely used because of its coarse spatial resolution (120m) except being employed in thermal mapping. Because SPOT panchromatic has high resolution it makes 10$\times$10m SPOT panchromatic data be used to classify for the detailed classification. SPOT as the Landsat has acquired hundreds of thousands of images in digital format that are commercially available and are used by scientists in different fields. After the merged, the classifications used supervised classification and neural network. The method of the supervised classification is what used parallelepiped and/or minimum distance and MLC(Maximum Likelihood Classification) The back-propagation in the multi-layer perception is one of the neural network. The used method in this paper is MLC(Maximum Likelihood Classification) of the supervised classification and the back-propagation of the neural network. Later in this research SPOT systems and images are compared with these classification. A comparative analysis of the classifications from the TM and merged SPOT/TM datasets will be resulted in some conclusions.

  • PDF

Numerical Investigation of Blackbody Design for Spaceborne Image Sensor Non-uniformity Characteristic Calibration (우주용 영상센서 출력특성 교정용 흑체 설계의 해석적 유효성 검토)

  • Kim, Hye-In;Choi, Pil-Gyeong;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • For calibration of the non-uniformity characteristics of the space-borne infrared (IR) sensor, a black body system shall provide estimated representative surface temperature at various reference temperatures by using the limited number of temperature sensors. The black body system proposed in this study has an I/F flange integrated on the rear side of the black body for installation of the heat pipe to transfer the residual heat after the black body heat-up. This design allows for obtaining a circular symmetric thermal contour of black body with low surface temperature gradient, leading to much easier representative temperature estimation. Additionally, this provides mechanically stable thermal I/F under launch and on-orbit environmental loads, as well as allowing a fail safe design by using the two heat pipes. Also, a highly accurate temperature estimation is possible even if the temperature sensors are attached on the surface on the rear side of the black body. The effectiveness of the thermal design of the proposed black body has been verified through the on-orbit thermal analysis. Based on the results, the representative surface temperature was estimated according to the number and position of the temperature sensors.

3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images (드론 열적외선 영상을 이용한 3차원 열공간 모델링)

  • Shin, Young Ha;Sohn, Kyung Wahn;Lim, SooBong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • Systematic and continuous monitoring and management of the energy consumption of buildings are important for estimating building energy efficiency, and ultimately aim to cope with climate change and establish effective policies for environment, and energy supply and demand policies. Globally, buildings consume 36% of total energy and account for 39% of carbon dioxide emissions. The purpose of this study is to generate three-dimensional thermo-spatial building models with photogrammetric technique using drone TIR (Thermal Infrared) images to measure the temperature emitted from a building, that is essential for the building energy rating system. The aerial triangulation was performed with both optical and TIR images taken from the sensor mounted on the drone, and the accuracy of the models was analyzed. In addition, the thermo-spatial models of temperature distribution of the buildings in three-dimension were visualized. Although shape of the objects 3D building modeling is relatively inaccurate as the spatial and radiometric resolution of the TIR images are lower than that of optical images, TIR imagery could be used effectively to measure the thermal energy of the buildings based on spatial information. This paper could be meaningful to present extension of photogrammetry to various application. The energy consumption could be quantitatively estimated using the temperature emitted from the individual buildings that eventually would be uses as essential information for building energy efficiency rating system.

Relationship Analysis between Topographic Factors and Land Surface Temperature from Landsat 7 ETM+ Imagery (Landsat 7 ETM+ 영상에서 얻은 지표온도와 지형인자의 상관성 분석)

  • Lee, Jin-Duk;Bhang, Kon Joon;Han, Seung Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.482-491
    • /
    • 2012
  • Because the satellite imagery can detect the radiative heat from the surface using the thermal IR (TIR) channel, there have been many efforts to verify the relationship between the land surface temperature (LST) and urban heat island. However, the relationship between geomorphological characteristics like surface aspects and LST is relatively less studied. Therefore, the geomorphological elements, for example, surface aspects and surface slopes, are considered to evaluate their effects on the change of the surface temperature distribution using the Landsat 7 ETM+ TIR channel and the possibility of the image to detect anthropogenic heat from the surface. We found that the surface aspect is ignorable but the surface slope with the sun elevation influences on the surface temperature distribution. Also, the radiative heat from the surface to the atmosphere could not be accurately recorded by the satellite image due to the surface slope but the slope correction process used in this study could correct the surface temperature under slope condition and the slope correction, in fact, was not influenced on the average temperature of the surface. The possibility of the anthropogenic heat detection from the surface from the satellite imagery was verified as well.

The flight Test Procedures For Agricultural Drones Based on 5G Communication (5G 통신기반 농업용 드론 비행시험 절차)

  • Byeong Gyu Gang
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.38-44
    • /
    • 2023
  • This study aims to determine how agricultural drones are operated for flight tests using a 5G communication in order to carry out a mission such as sensing agricultural crop healthy status with special cameras. Drones were installed with a multi-spectral and IR camera to capture images of crop status in separate altitudes with different speeds. A multi-spectral camera can capture crop image data using five different particular wavelengths with a built-in GPS so that captured images with synchronized time could provide better accuracy of position and altitude during the flight time. Captured thermal videos are then sent to a ground server to be analyzed via 5G communication. Thus, combining two cameras can result in better visualization of vegetation areas. The flight test verified how agricultural drones equipped with special cameras could collect image data in vegetation areas.

Mechanical Stability Analysis of PCB and Component for Launch and On-orbit Environment based on Fatigue Failure Theory and FEM (피로파괴 이론과 FEM에 기초한 발사 및 궤도 환경에서의 기판 및 소자의 구조건전성 분석)

  • Jeong, Suk-Yong;Oh, Hyun-Ung;Lee, Kyung-Joo;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.952-958
    • /
    • 2011
  • On-board IR calibration device has been developed for calibration of spaceborne image sensor. It is composed of a blackbody to provide two different radiance temperatures, tilt mirror with a function of stow and deploy to view the blackbody during the calibration and on-board calibration control unit to control the function of the blackbody and tilt mirror. In this paper, to guarantee the structural safety of the unit, the structural and thermal analysis including a thermo-elastic analysis for verifying structural safety on the soldered part of chips have been performed. In addition, safety margin of the chips on the PCB obtained from the conventional analytical method has been compared to the results from the FEM analysis.

Preparation and Interface Characteristics of $PbTiO_3$ Ferroelectric Thin Film (강유전성 $PbTiO_3$ 박막의 형성 및 계면특성)

  • Hur, Chang-Wu;Lee, Moon-Key;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.83-89
    • /
    • 1989
  • Ferroelectric $PbTiO_3$ thin film is deposited with rf sputtering at substrate temperature of $100-150^{\circ}C$. It is found that this has pyrochlore structure of amorphous type by X-ray diffractive analysis. Thermal annealing has excellent characteristics at $550^{\circ}C$ and laser annealing has best crystalline structure in case of scanning with 50 watts. Interface states in MFST and MFOST structure with a $PbTiO_3$ ferroelectric thin film gate have been investigated from analysis of C-V data. The interface states density has been drastically reduced by inserting an oxide layer between ferroelectric and semiconductor. The observed effect increase feasibility of employing ferroelectric thin films such as nonvolatile memory field effect transistor, IR optical FET, and Image Devices with a ferroelectric layer.

  • PDF

A Study on the Correlation between Temperature and CMP Characteristics (CMP특성과 온도의 상호관계에 관한 연구)

  • Gwon, Dae-Hui;Kim, Hyeong-Jae;Jeong, Hae-Do;Lee, Eung-Suk;Sin, Yeong-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.156-162
    • /
    • 2002
  • There are many factors affecting the results of CMP (Chemical Mechanical Polishing). Among them, the temperature is related to the removal rate and WIWNU (Within Wafer Non-Uniformity). In other words, the removal rate is proportional to the temperature and the variation of temperature distribution on a pad affects the non-uniformity within a wafer. In the former case, the active chemistry improves the rate of chemical reaction and the removal rate becomes better. But, there are not many advanced studies. In the latter case, a kinematical analysis between work-piece and pad can be obtained. And such result analysed from the mechanical aspect can be directly related to the temperature distribution on a pad affecting WIWNU. Meanwhile, the temperature change affects the quantities of both slurry and pad. The change of a pH value of the slurry chemistry due to a temperature variation affects the surface state of an abrasive particle and hence the agglomeration of abrasives happens above the certain temperature. And the pH alteration also affects the zeta potential of a pad surface and therefore the electrical force between pad and abrasive changes. Such results could affect the removal rate and etc. Moreover, the temperature changes the 1st and 2nd elastic moduli of a pad which are closely related to the removal rate and the WIWNU.