• Title/Summary/Keyword: IR and Raman spectra

Search Result 36, Processing Time 0.024 seconds

Pycnometric and Spectroscopic Studies of Red Phosphors Ca2+(1-1.5x)WO4:Eu3+x and Ca2+(1-2x)WO4:Eu3+x,Na+x

  • Cho, Seon-Woog
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2769-2773
    • /
    • 2013
  • Red phosphors $Ca_{(1-1.5x)}Eu_xWO_4$ and $Ca_{(1-2x)}Eu^_xNa_xWO_4$ were synthesized with various concentrations x of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors were found to be a tetragonal scheelite structure with space group $I4_1/a$. X-ray diffraction (XRD) results show the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and indicate that there is no basic structural deformation caused by the vacancies ${V_{Ca}}^{{\prime}{\prime}}$ or the $Eu^{3+}$ (and $Na^+$) ions in the host crystals. Densities of $Ca_{(1-1.5x)}Eu_xWO_4$ were measured on a (helium) gas pycnometer. Comparative results between the experimental and theoretical densities reveal that $Eu^{3+}$ (and $Na^+$) ions replace the $Ca^{2+}$ ions in the host $CaWO_4$. Also, the photoluminescence (PL) emission and photoluminescence excitation (PLE) spectra show the optical properties of trivalent $Eu^{3+}$ ions, not of divalent $Eu^{2+}$. Raman spectra exhibit that, without showing any difference before and after the doping of activators to the host material $CaWO_4$, all the gerade normal modes occur at the identical frequencies with the same shapes and weaker intensities after the substitution. However, the FT-IR spectra show that some of the ungerade normal modes have shifted positions and different shapes, caused by different masses of $Eu^{3+}$ ions (or $Na^+$ ions, or ${V_{Ca}}^{{\prime}{\prime}}$ vacancies) from $Ca^{2+}$.

Crystal growth and optical properties of Zn and Yb co-doped $LiNbO_3$ rod-shape single crystal by micro-pulling down method (Micro-pulling down법으로 성장시킨 Zn와 Yb를 첨가한 $LiNbO_3$ 단결정의 광학적 특성)

  • Her, J.Y.;Lee, H.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.11-14
    • /
    • 2009
  • Yb and Zn co-doped $LiNbO_3$ single crystal rods which had a diameter of 2 mm and a length of $15{\sim}25 mm$ were grown by micro-pulling down (${\mu}-PD$) method. The single crystals were successfully grown and had a uniform diameter and a smooth surface without crack. We realized of $LiNbO_3$ single crystals were hexagonal structure to compare with peaks of $LiNbO_3$ powder by Raman spectra. The threshold level of Zn concentration which is effective for optical damage were observed as about 1 mol% with IR transmission spectra.

Effect of CuO on the Optical and Structural Properties of Phosphate Glass for Near-Infrard Filter (근적외선 필터용 인산계 유리의 광학적 특성 및 구조적 특성에 미치는 CuO 의 영향)

  • Kim, Seong-Il;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Kim, Young-Ho;Lee, Jong-Hwa;Choi, Deuk-Kyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.657-660
    • /
    • 2009
  • Optical characteristics and structural changes depending on CuO content in phosphate glasses that are used in near-infrared (near-IR) filters were investigated. With phosphate glasses that contain 1-9 mol% CuO, changes in optical transmittance, optical absorption, and color coordinate were measured with a UV-VIS spectrophotometer. An XPS (X-ray photoelectron spectroscopy) analysis was performed to determine valence of copper ion that influences optical characteristics in near-IR filter glasses. Structural changes in glasses depending on CuO content were also analyzed by FT-IR (Fourier transform infrared) and Raman spectrophotometers. From the UV-VIS spectrophotometer results, strong absorption peaks at 220 & 900 nm were found and transmittance was decreased. The color coordinates of the glasses were shifted to the green color direction with CuO addition for increasing absorption of long wavelength range spectra, in spite of the amount of $Cu^{2+}$, which gives a blue color to glasses, and which was increased in XPS results. Also, structural de-polymerization of glasses with CuO addition were found by FT-IR and Raman results.

The Effect of Processing Variables on Structural Changes and Optical Properties of $SiO_2-TiO_2$ Sol-Gel Derived Films

  • Hwang, Jin Myeong;Im, Seong Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1181-1186
    • /
    • 2000
  • The structural evolution during the thermal treatment of $70SiO_2-3OTiO_2(mole%)$ sol-gel derived powders and films was investigated by FT-IR, Raman and XPS, and XRD. From these results, the $TiO_2-rich$ regions involving $Ti^{4+}$ ions in octahedral coordination were confirmed to be amorphous at $600^{\circ}C$. However, Raman spectra along with XRD patterns indicated that at high temperature (above $700^{\circ}C)$, the amorphous $TiO_2was$ segregating to form anatase crystal. Also, the effect of experimental variables such as thermal treatment, heating rate and exposure to water vapor on structural changes, refractive index and thickness of the film coated on sodalime-silicate glass were investigated.

Syntheses and Spectroscopic Studies of Metal-Metal Bonded Complexes (Zr-Fe)

  • Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.334-337
    • /
    • 1986
  • The preparation of the metal-metal bonded complex $Cp_2ZrClFeCp(CO)_2$ has been achieved by the reaction of $Cp_2ZrCl_2$ and strong nucleophile $NaFeCp(CO)_2$. The more soluble metal-metal bonded complexes $Cp_2ZrRFeCp(CO)_2(R=CH_3,\;n-C_8H_{17}$) have also been prepared through the reaction of Cp$_{2}$ZrRCl and NaCpFe(CO)$_{2}$. The complexes were characterized by IR, Raman, $^{1}$H NMR and Mass spectra. The complete absorption (100-3800 cm$^{-1}$) spectra for the three metal-metal bonded molecules are reported and the bands of each vibration were assigned.

Fourier Transform Infrared Matrix Isolation Study of Acetonitrile in Solid Argon

  • Hack Sung Kim;Kwan Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.520-526
    • /
    • 1992
  • The intramolecular fundamental vibrations of $CH_3CN$ trapped in solid argon matrix have been reinvestigated by means of FT-IR spectroscopy in the spectral range of 4000-500 $cm^{-1}$. By employing a quantum detector, infrared spectra could be obtained at matrix to solute ratio of 10000, allowing the clarification of the peaks due to monomeric species more clearly. Temperature controlled diffusion was initiated to identify the dimeric and polymeric species in terms of difference spectra. The assignments of monomeric and dimeric species are found, in general, to agree with the earlier work performed at higher concentration (Ar/$CH_3CN$ = 1500) using a dispersive spectrometer. Nonetheless the difficulty of minute differences between the earlier infrared and Raman spectroscopic results could be resolved. Moreover, the previously unnotified peaks due to polymeric species have been identified.

Variation in IR and Raman Spectra of CD3CN upon Solvation of InCl3 in CD3CN: Distinctive Blue Shifts, Coordination Number, Donor-Acceptor Interaction, and Solvated Species

  • Cho, Jun-Sung;Cho, Han-Gook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.803-809
    • /
    • 2009
  • Notable blue shifts of the ν2 $C{\equiv}N$ stretching, $_{v4}$ C-C stretching and $_{v8}$ CCN deformation bands of $CD_3CN$ are observed upon solvation of $InCl_3$, resulting from the donor-acceptor interaction. The Raman spectrum in the $_{v2}$ region shows further details; at least two new bands emerge on the blue side of the $_{v2}$ band of free $CD_3CN$, whose relative intensities vary with concentration, suggesting that there exist at least two different cationic species in the solution. The strong hydrogen bonds formed between the methyl group and ${InCl_4}^-$ result in a large band appearing on the red side of the ν1 $CD_3$ symmetric stretching band. The solvation number of $InCl_3$, determined from the Raman intensities of the $C{\equiv}N$ stretching bands for free and coordinated $CD_3CN$, increases from $\sim$1.5 to $\sim$1.8 with decreasing concentration.

Spectroscopic and Microstructural Analysis of Phase Transformation of Mg-PSZ/$Al_2O_3$ Fibers Prepared by Sol-Gel Method

  • Eun, Hee-Tai;Whang, Chin-Myung
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.102-110
    • /
    • 1996
  • The Mg-PSZ/$Al_2O_3$ fibers were fabricated by the sol-gel method. The added $Al_2O_3$ amounts were varied from 5 to 20 mol%. The phase transformation studies of a drawn Mg-PSZ/$Al_2O_3$ fibers were investigated by use of X-ray diffraction, IR and Raman spectroscopy. Microstructure and tensile strength of fibers were subjected to scanning electron microscopy and tensile strength tester. When $Al_2O_3$ was added to the Mg-PSZ fibers, it was found out from the analysis of XRD patterns and Raman spectra that a small amount of crystalline spinel($MgAl_2O_4$) started to form due to the reaction between $Al_2O_3$ and MgO, at $1000^{\circ}C$, and the phase transformation temperature of $ZrO_2$ crystal phase at different sintering temperatures increased. Also, the rapid grain growth with average size of 2.0 ${\mu}m$ shown in Mg-PSZ fiber at $1500^{\circ}C$ was considerably suppressed to 0.39 ${\mu}m$ by adding $Al_2O_3$ at the same temperature. When the Mg-PSZ/$Al_2O_3$ fibers containing 5 mol% $Al_2O_3$ were sintered $800^{\circ}C$ for 1 hr, average tensile strength of fibers was 0.9 GPs at diameters of 20 to 30 ${\mu}m$, but as the sintering temperatures was increased to $1000^{\circ}C$ for 1 hr, average tensile strength of fibers increased to 1.2 GPa in the same diameter range.

  • PDF

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

Analysis of rutile single crystals grown by skull melting method (Skull melting법에 의해 성장된 rutile 단결정 분석)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • Rutile single crystals grown by skull melting method were cut parallel and perpendicular to growth axis, and both sides of the cut wafers (${\phi}5.5mmx1.0mm$) were then polished to be mirror surfaces. The black wafers were changed into pale yellow color by annealing in air at 1200 and $1300^{\circ}C$ for $3{\sim}15\;and\;10{\sim}50$ hours, respectively. After annealing, structural and optical properties were examined by specific gravity (S.G), SEM-electron backscattered pattern (SEM-EBSP), X-ray diffraction (XRD), FT-IR transmittance spectra, laser Raman spectroscopy (LRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These results are analyzed increase of weight in air, decrease of weight in water and specific gravity, shown secondary phase of needle shape, diffusion of oxygen ion and increase of $Ti^{3+}$. From the above results, we suggest that the skull melting method grown rutile single crystals contain defect centers such as $O_v,\;Ti^{3+},\;O_v-Ti^{3+}$ interstitials and $F^+-H^+$.