• Title/Summary/Keyword: IPMSM(Interior Permanent Magnet Synchronous Motor)

Search Result 295, Processing Time 0.031 seconds

A characteristic comparison of BLDCM, IPMSM by harmonics, eddy current and thermal analysis (고조파, 와전류 및 열 해석을 통한 BLDCM, IPMSM의 특성비교)

  • Jin, Chang-Sung;Bae, Jae-Nam;Kim, Ki-Chan;Son, Rak-Won;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.25-27
    • /
    • 2007
  • Brushless DC Motor (BLDCM) is DC motor and Interior PM Synchronous Motor (IPMSM) is AC motor. Besides their way of control is different. But it is similar that both motors rotate synchronous velocity and use the permanent magnet. So, it is an objective to grasp a tendency of motor design and efficiency of motor through a characteristic comparison of BLDCM and IPMSM with the same power, rotation velocity, torque and input voltage.

  • PDF

Outer Voltage Regulation Loop for Maximum Torque Operation of Interior Permanent Magnet Synchronous Motor in the Flux (약계자 영역에서 외부 전압제어 루프에 의한 매입형 영구자석 동기전동기의 최대 토오크 운전)

  • Kim, Jang-Mok;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.121-123
    • /
    • 1997
  • A novel flux-weakening scheme for the Interior Permanent Magnet Synchronous Motor (IPMSM) is proposed. This is implemented based on the output of the synchronous PI current regulator-reference voltage to the PWM inverter. Attractive features of this flux weakening scheme include no dependency on the machine parameters, the guarantee of current regulation at any operating condition, and smooth and fast transition into and out of the flux weakening mode without a discontinuity. Experimental results are presented to verify the feasibility of the proposed control scheme.

  • PDF

A Sensorless Speed Control of Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer (적응 적분바이너리 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어)

  • Kang, Hyoung-Seok;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.71-80
    • /
    • 2007
  • A control approach for the sensorless speed control of interior permanent magnet synchronous motor(IPMSM) based on adaptive integral the binary is proposed. With a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the width of the constant boundary limits the steady state estimation accuracy and robustness. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral augmented switching the hyperplane equation. By mean of integral characteristics, the rotor speed can be finely estimated and utilized for a sensorless speed controller for IPMSM. The proposed adaptive integral binary observer applies an adaptive scheme, because the parameters of the dynamic equations such as the machine inertia or the viscosity friction coefficient is not well known and these values can be easily changed generally during normal operation. Therefore, the observer can overcome the problem caused by using the dynamic equations, and the rotor speed estimation is constructed by using the Lyapunov function. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Model Predictive Control of Circulating Current Suppression in Parallel-Connected Inverter-fed Motor Drive Systems

  • Kang, Shin-Won;Soh, Jae-Hwan;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1241-1250
    • /
    • 2018
  • Parallel three-phase voltage source inverters in a direct connection configuration are widely used to increase system power ratings. A zero-sequence circulating current can be generated according to the switching method; however, the zero-sequence circulating current not only distorts current, but also reduces the system reliability and efficiency. In this paper, a model predictive control scheme is proposed for parallel inverters to drive an interior permanent magnet synchronous motor with zero-sequence circulating current suppression. The voltage vector of the parallel inverters is derived to predict and control the torque and stator flux components. In addition, the zero-sequence circulating current is suppressed by designing the cost function without an additional current sensor and high-impedance inductor. Simulation and experimental results are presented to verify the proposed control scheme.

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

A Study on the Design of Flat-Type IPMSM in Parallel Hybrid Traction Application (병렬형 하이브리드 구동용 매입형 영구자석동기전동기 설계에 대한 연구)

  • Kim Ki-Nam;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.718-724
    • /
    • 2004
  • This study investigates the design factors of Interior Permanent Magnet Synchronous Motor(IPMSM) which is applied to Hybrid electric vehicle as a driving power. Recently, there are many studies of IPMSM for application to Hybrid Electric Vehicle, because IPMSM has characteristics of high torque, high power density and high efficiency which come from reluctance torque due to difference of inductance as well as magnet torque. This study analyzes the inductance and design characteristics of IPMSM by using finite element method and focuses on design and analysis of IPMSM which can operates with high efficiency at low speed range. For this embodiment, magnet shape is changed from conventional block type to arc type without any change of outline dimension of motor and this change of magnet shape makes it possible to increase back EMF and sinusoidal waveform. Analysis results are verified by test of improved and embodied motor. As a test result , increased back EMF and sharply decrease of harmonics are secured and through this contribution of reduced fuel consumption of Hybrid electric vehicle is expected.

Study on the Inductance Characteristics According to Rotor Shape of IPMSM (IPMSM의 회전자 형상에 따른 인덕턴스 특성 분석)

  • Cho, Gyu-Won;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.928-929
    • /
    • 2011
  • 본 논문에서는 IPMSM(Interior Permanent Magnet Synchronous Motor)의 회전자에 보조 슬롯인 노치(Notch)와 자속 장벽인 베리어(Barrier)를 설치하여 전반적인 구동 특성을 향상 시켰으며, 각 형상에 따른 d, q축 인덕턴스의 변화를 고찰하였다. 인덕턴스의 계산은 IPMSM의 등가회로 및 벡터도를 이용하였으며 계산되어진 인덕턴스로 전류위상각에 따른 토크를 계산하고 FEM(Finite Element Method)결과와 비교하였다.

  • PDF

Drive controls regarding displacement of the velocity of light of Interior Permanent Magnet Synchronous Motor and performance analysis (매입형 영구자석 동기전동기(IPMSM)의 광속도 변위 구동제어 성능분석)

  • Kim, Won-Kyu;Jeong, Tae-Cheol;Kim, Youn-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.694_695
    • /
    • 2009
  • 본 논문은 매입형 영구자석 동기 전동기(IPMSM)의 고속출력 구동을 위한 제어 특성 해석을 시뮬레이션을 통해 나타낸다. IPMSM의 d축,q축 인덕턴스인 Ld, Lq 선형모델과 비선형 모델의 선형 제어와 비선형제어를 실험과 시뮬레이션에 의하여 비교 분석 하였다. 본 논문은 IPMSM에 최적화된 제어 시스템 구연에 있어서 기초 자료가 될 것이다.

  • PDF

The Performance Analysis of IPMSM Drive System applied Predictive Current Control (예측전류제어가 적용된 IPMSM 구동 시스템의 제어기 성능 분석)

  • Hwang, Jun-Ha;Won, Il-Kuen;Kim, Do-Yun;Kim, Young-Real;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.63-64
    • /
    • 2015
  • The control of IPMSM(Interior Permanent Magnet Synchronous Motor) for electric vehicle is important to track torque reference depended on accelerator. This paper executes IPMSM control applied the predictive current control which has good dynamic characteristic and, compare PI control with predictive current control to verify dynamic characteristic through simulation.

  • PDF

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.855-864
    • /
    • 2011
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of IPMSM(Interior Permanent Magnet Synchronous Motor). First, in order to improve the performance of speed tracking a nonlinear back-stepping controller is designed. Since it is difficult to control the high performance driving without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. In addition, for the efficiency of power consumption of the motor, controller is designed to operate motor with minimum current for maximum torque. The proposed controller is applied through simulation to the a 2-hp IPMSM for the angular velocity reference tracking performance and load torque volatility estimation, and to test the MTPA(Maximum Torque per Ampere) operation in constant torque operation region. The result verifies the efficacy of the proposed controller.