• Title/Summary/Keyword: IPMC(ionic Polymer Metal Composite)

Search Result 49, Processing Time 0.034 seconds

Equivalent Beam and Equivalent Bimorph Beam Models for ionic Polymer-Metal Composite Actuators (등가 보 및 등가 바이모프 보를 이용한 IPMC 작동기 모델링)

  • 이상기;김광진;윤광준;박훈철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1012-1016
    • /
    • 2004
  • In the present paper, equivalent beam and equivalent bimorph beam models for IPMC(ionic Polymer-Metal Composite) actuators are described. Physical properties of an IPMC, such as Young's modulus and electro-mechanical coupling coefficient. are determined from the rule of mixture, bimorph beam equations, and measured force-displacement data of a cantilevered IPMC actuator. By using a beam equation with estimated physical properties, actuation displacements of a cantilevered IPMC actuator was calculated and a good agreement between the computed tip displacements and the measured data was observed. Finite element analysis(FEA) combined with the estimated physical properties was used to reproduce the force-displacement relationship of an IPMC actuator. Results from the FEA agreed well with the measure data. The proposed models might be used for modeling of IPMC actuators with complicated shapes and boundary conditions.

Control of IPMC-based Artificial Muscle for Myoelectric Hand Prosthesis

  • Lee Myoung-Joon;Jung Sung-Hee;Moon Inhyuk;Lee Sukmin;Mun Mu-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.257-264
    • /
    • 2005
  • This paper proposes an ionic polymer metal composite (IPMC) based artificial muscle to be applicable to the Myoelectric hand prosthesis. The IPMC consists of a thin polymer membrane with metal electrodes plated chemically on both faces, and it is widely applying to the artificial muscle because it is driven by relatively low input voltage. The control commands for the IPMC-based artificial muscle is given by electromyographic (EMG) signals obtained from human forearm. By an intended contraction of the human flexor carpi ulnaris and extensor carpi ulnaris muscles, we investigated the actuation behavior of the IPMC-based artificial muscle. To obtain higher actuation force of the IPMC, the single layered as thick as $800[{\mu}m]$ or multi-layered IPMC of which each layer can be as thick as $178[{\mu}m]$ are prepared. As a result, the bending force was up to the maximum 12[gf] from 1[gf] by actuating the single layered IPMC with $178[{\mu}m]$, but the bending displacement was reduced to 6[mm] from 30[mm]. The experimental results using an implemented IPMC control system show a possibility and a usability of the bio-mimetic artificial muscle.

High-Performance Ionic Polymer-Metal Composite Actuators Based on Nafion/Conducting Nanoparticulate Electrospun Webs (나피온/전도성 나노입자 전기방사 웹을 이용한 고성능 이온성 고분자-금속 복합체 구동기의 제조)

  • Jung, Yo-Han;Lee, Jang-Woo;Yoo, Young-Tai
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.434-439
    • /
    • 2012
  • To improve the performance of ionic polymer-metal composite (IPMC) actuators, Nafion films sandwiched with Nafion/conducting nanoparticulate electrospun webs were used as polymer electrolytes of IPMC. Multiwalled carbon nanotube (MWNT) and silver were the conducting nanoparticulates and the nanoparticles dispersed in a Nafion solution were electrospun. IPMCs with the Nafion/conducting nanoparticulate electrospun webs displayed improved displacements, response rates, and blocking forces. MWNT was superior to silver in terms of displacement and blocking force, and the webs without the conducting fillers also caused enhanced performances compared with the conventional IPMCs. These improvements were attributed to an elevated electrolyte flux through highly porous interlayers and capacitance induced by well dispersed conducting fillers, and low interfacial resistance between electrolyte and electrodes.

Dynamic modeling and control of IPMC hydrodynamic propulsor

  • Agrahari, Shivendra K.;Mukherjee, Sujoy
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.499-508
    • /
    • 2017
  • The ionic polymer-metal composite (IPMC) is an electroactive polymer material and has a promising potential as actuators for propulsion and locomotion in underwater systems. In this paper a physics based model is used to analyse the actuation dynamics of the IPMC propulsor. Moreover, proportional-integral (PI) controller is used for position control of the tip displacement of IPMC propulsor. PI parameter tuning is performed using particle swarm optimization (PSO) algorithm. Several performance indices have been used as an objective function to optimize the error of the system. Finally, the best tuning method is found out by comparing the results under various performance indices.

Enhanced Behaviors of Ionic-Polymer Metal Composite (IPMC) Actuator Coupled with Polymeric Anion-doped Polypyrrole Thin Film

  • Hong, Chan;Nam, Jae-Do;Tak, Yong-Sug
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.137-140
    • /
    • 2006
  • In order to overcome the weak actuation and relaxation problems during the deformation of IPMC actuator, polymeric anion (polystyrenesulfonate)-doped polypyrrole(Ppy(PSS)) was electrodeposited onto IPMC actuator. Electrochemical quartz crystal microbalance study showed that hydrated cations were instilled into Ppy(PSS) film and polymeric-anion dopants introduced during polymerization were not expelled. Ppy(PSS)-coated IPMC actuator formed two electrode/electrolyte interfaces, Pt/nafion and Ppy(PSS)/bulk solution, and additive volume expansion phenomena at interfaces induced the large deformation compensating the relaxation of actuation by back diffusion of water.

Ionic polymer-metal composite as energy harvesters

  • Tiwari, Rashi;Kim, Kwang J.;Kim, Sang-Mun
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.549-563
    • /
    • 2008
  • The ability of an electroactive polymer, IPMC (Ionic Polymer Metal Composites,) to produce electric charge under mechanical deformations may be exploited for the development of next generation of energy harvesters. Two different electrode types (gold and platinum) were employed for the experiments. The sample was tested under dynamic conditions, produced through programmed shaking. In order to evaluate the potential of IPMC for dry condition, these samples were treated with ionic liquid. Three modes of mechanical deformations (bending, tension and shear) were analyzed. Experimental results clearly indicate that IPMCs are attractive applicants for energy harvesting, with inherent advantages like flexibility, low cost, negligible maintenance and virtually infinite longevity. Besides, preliminary energy harvesting model of IPMC has been formulated based upon the work of previous investigators (Newbury 2002, Newbury and Leo 2002, Lee, et al. 2005, Konyo, et al. 2004) and the simulation results reciprocate experimental results within acceptable error.

Dynamic Characteristics of Ionic-Polymer-Metal-Composite (IPMC의 동적 특성)

  • Jeon, J.H.;Shin, D.G.;Lee, K.H.;Oh, I.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.356-359
    • /
    • 2005
  • Ionic-polymer-metal-composite(IPMC), one of new actuation materials of electroactive polymers plated with noble metallic electrodes is known for the fast bending upon electric field. The IPMC strip bends towards anode under electrical field. It has many merits of low driving voltage, quick responsiveness, high durability, possibility of miniaturizability. In this paper, we studied for developing the large deflection of IPMC according several fabricating parameters. We measured the large deflection by the different process of sandpaper and sandblasting in surface treatment, the initial compositing process and the surface electroding process, and the different counter ions in ion exchanging process. In fundamental, the displacement of IPMC strip depends on voltage magnitude and applied signal frequency and its maximum deformation is observed at a critical frequency, resonant frequency.

  • PDF

Pre-shaping of ionic polymer metal composite actuators by heat treatment and characterization (이온성 고분자 금속 복합물(IPMC) 액추에이터의 열처리에 의한 성형 및 특성분석)

  • Park, Shin-Ho;Kim, Dong-Ik;Park, Man-Jun;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.353-358
    • /
    • 2009
  • Ionic polymer metal composite(IPMC) has been used as a promising material for various actuator applications. The IPMC actuator is difficult to be fabricated with complicated 3-dimensional shape. We propose a simple heat treatment process that can fabricate IPMC actuator with various shapes. Experimental results show the pre-shaped IPMC actuator by heat treatment does not show any degradation of its actuation abilities such as bending displacement, generation force and reliability in bending motion.

Effect of the Surface Electrode Formation Method and the Thickness of Membrane on Driving of Ionic Polymer Metal Composites (IPMCs) (표면전극 형성 방법과 이온-교환막 두께가 이온성 고분자-금속 복합체(IPMC) 구동에 미치는 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.471-477
    • /
    • 2006
  • Ion exchange metal composite(IPMC) has toughness equivalent to the range of human's muscle, transformation-actuation force by relatively low voltage and the fast response time. Thus, as a new method for preparing thicker IPMC, the solution casting method to make the films of various thicknesses out of liquid nation was attempted in this study. To reduce the surface resistance of electrode, the first plated electrode prepared by Oguro method was replated with Au and Ir using ion beam assisted deposition(IBAD). The microstructures of electrode surfaces before and after IBAD plating were investigated using SEM. The change of water and ion-conductivity in IPMC were measured under applied voltage. The displacement and driving force of IPMCs with various thicknesses were measured to evaluate the driving properties.