• 제목/요약/키워드: IPF(Ice Packing Factor)

검색결과 13건 처리시간 0.02초

지역냉방용 아이스슬러리 수송시스템의 배관방식에 따른 특성 (Characteristics of the Ice Slurry Transportation System for District Cooling Depending on the Transportation Lines)

  • 이윤표;정재동;윤석만
    • 설비공학논문집
    • /
    • 제18권7호
    • /
    • pp.571-577
    • /
    • 2006
  • The characteristics of ice packing factor (IPF) at the ice slurry system using one line type are compared with the system using two lines type. The installation space for one transporting line is saved at the one line system. For the one line type, the ice packing factor is reduced along the downstream, but for the two lines type, the ice packing factor is fixed. For the one line system, mass flow rate in the main line is fixed along the down-stream, but for two lines system, the mass flow rate in the main line is reduced along the downstream. For one line system, along the down stream after IPF=0, the temperature at the main steam is increased, and the extracted mass flow is increased. The initial IPF, at which the IPF is not arrived at zero upto the final node, is proposed for the B area.

IPF 조절기를 이용한 배관내 아이스 슬러리의 빙충전율 제어 (A Control of Ice Packing Factor of Ice Slurry in a Pipe using IPF Controller)

  • 권재성;이윤표;윤석만
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1105-1110
    • /
    • 2008
  • An experimental study was performed to control Ice Packing Factor (IPF) of ice slurry in a pipe in a real time. This paper presented the concept that IPF can be adjusted by the amount of the solution contained to ice slurry. Based on this concept, we designed IPF controller consisting of the outlet tube providing ice slurry and the upper tube discharging only a solution through holes, and investigated the technical validity and efficiency of the controller experimentally. As a result, the original proposed IPF controller could not control IPF of ice slurry in a pipe. This is because an ice of ice slurry was drained out into not only the outlet but also the upper of the controller due to the size of the holes relatively large compared to the ice particle. Therefore, we changed the hole size of IPF controller surface using fine meshes and then, observed that IPF in a pipe was increased by $4{\sim}7$ percent when the hole size was $80{\mu}m$ and less.

  • PDF

굴절률을 이용한 수용액의 빙충전율 측정 (Measurement of the Ice Packing Factor of an Aqueous Solution Using the Index of Refraction)

  • 백종현;정동열;강채동;홍회기
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.1088-1094
    • /
    • 2005
  • In the present paper, a new method is proposed for the measurement of the ice packing factor (IPF) of an ice slurry using the index of refraction. The purpose of the new method is to improve the resolution of the measurement and to increase its resistance to electric noise as compared to the standard IPF measurement technique that relies on measurement of the freezing temperature. These two methods are similar in that they both obtain a concentration of aqueous solution from measured physical quantities and calculate the IPF using a relation between concentration and IPF. We experimented and compared the two methods, whose results were also compared with results from the calorimeter method obtaining the IPF directly They are in good agreement (within $5\%$), which demonstrates the validity of the newly proposed method.

낙구식 점도계를 이용한 아이스슬러리의 점도측정에 관한 연구 (A Study on the Measuring Method of Ice Slurry Viscosity Using the Falling Sphere Viscometer)

  • 김명준;유직수;임재근;최순열
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.593-598
    • /
    • 2007
  • The present study has dealt with the measuring method of ice slurry viscosity using falling sphere viscometer. The experimental apparatus was composed by test section and high-speed video system. And the spheres used in this study were alumina and glass. The main parameters were ice packing factor (IPF) and falling velocity of sphere so the acquired results were discussed for these parameters. The viscosity of ice slurry was calculated by using measured falling velocity and moving distance at instantaneous time and the Stokes hypothesis was used for this calculation. It was clarified that possible measuring range was $IPF\;=\;0.06{\sim}0.14$ of this type of measuring device and measuring method. In addition, it was clarified that the viscosity of ice slurry increased to increase of ice packing factor (IPF) of ice slurry.

지역냉방을 위한 아이스슬러리의 연속제조 및 배관내 빙충전율 조절 (Continuous Ice Slurry Production and Control of Ice Packing Factor in a Pipe for the District Cooling)

  • 권재성;이윤표;이상훈;유호선;윤석만
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.825-832
    • /
    • 2008
  • The ice slurry maker which can produce the ice slurry well for the ice particle in-flowing condition was revised. We removed the stagnant region at the top of the ice slurry maker, and IPF 40% could be realized. The IPF controller with 6 mm diameter holes at the bottom was designed. But the IPF controller with only 6 mm diameter holes could not control IPF in a pipe. This is because the ice particles at ice slurry flow exist homogeneously not only at the upper part but also at the bottom part. We changed the hole size of IPF controller surface using fine meshes and then, IPF in a pipe was increased by 70% when the hole size was $80{\mu}m$ and less.

소구경 배관내 아이스슬러리의 유동형상 및 압력강하 특성에 관한 실험적 연구(2) (Experimental Study on Flow Patterns and Pressure Drop Characteristics of Ice Slurry in Small Size Pipe (2))

  • 이동원;윤찬일;주문창
    • 설비공학논문집
    • /
    • 제14권5호
    • /
    • pp.391-397
    • /
    • 2002
  • Pressure drop were experimentally investigated for ice slurry flowing in the acrylic pipes with inner diameter of 24 mm. Ice slurry was made from 6.5% ethylene glycol-water solution, and the pipes is consisted of horizontal, vertical (upward and downward) and $90^{\circ}$ elbow pipe. The ice Packing factor (IPF) and the flow rate of the experiments were varied from 0 to 30% and from 5 to 70kg/min respectively The measured pressure drop in various pipe positions were compared with those for the solution flow (IPF=0). The pressure drop was larder than that for solution flows as the IPF increased when the flow rate was low or very high. Sharp increases in pressure drop were observed for the cases when IPF is more than 70% in horizontal and vertical pipes, whereas the pressure drop increased with the IPF simultaneously in an elbow pipe.

PIV에 의한 원관내 Ice Slurry의 유동계측 (PIV Measurement on Ice Slurry Pipe Flow)

  • 황태규;홍성대;박성룡;백태실;도덕희
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.98-101
    • /
    • 2004
  • Experimental studies were reported on the characteristics of flows in a circular pipe in which ice slurry is flowing. This was mainly due to deficiency of conventional measurement techniques. In this report, the flow characteristics are quantitatively investigated by the use of PIV technique concerning the Ice Packing Factor(IPF) and the power changes of pump motor. It was experimentally verified that the power loss does not increase any more at a certain IPF value.

  • PDF

아이스슬러리의 분기관내 압력손실과 IPF 변화에 관한 실험적 연구 (Experimental Study on Transformation of IPF and Pressure Drop in Branches with Ice Slurry)

  • 박기원;최현웅;노건상;정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.272-279
    • /
    • 2003
  • This study aimed to understand the effects of transporting ice slurry Particles through Pipes with branches. The experimental apparatus was constructed as ice slurry mixing tank. vortex pump, manometers for differential pressure measuring. IPF(ice packing factor) measuring instruments and branches as test sections. The experiments were carried out under various conditions. with concentration of water solution ranging between 0∼20wt% and velocity of water solution at the entry ranging between 1.5∼2.5m/s. The differential Pressure and IPF between the pipe entry and exit were measured. and flowing form was checked throughout the experiment. The pressure loss in 3d branches appeared compared with 6d branches so that it was very high. In the pressure loss of the inside and outside of branches. 6d branches was showed the difference. but was agreed in 3d branches The pressure loss according to concentration of water solution, low value appeared at 10wt% in 6d branches, at 20wt% in 3d branches. The pressure loss according to velocity, did not show large difference. The change of IPF at outlet, appeared +15∼-25% in 6d branches and 0∼-20% in 3d branches. The difference of IPF at the inside and outside of branches. appeared 10∼15% in 6d branches and maximum 5% in 3d branches.

다양한 각도의 곡관 내에서 아이스슬러리의 유동에 따른 영향 (Effect on Ice Slurry Flowing in the Elbow of Various Angle)

  • 김규목;박기원;권일욱
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.142-149
    • /
    • 2004
  • Recently, the government introduced the thermal storage system for reducing the electric power load. Especially, the ice slurry type has gained lots of interest due to its good heat transfer and flowing characteristics. This study was peformed to understand the effects of transporting ice slurry through elbows of various angle. Propylene glycol water solution was used and about 2 mm ice particles were circulated. The experiments were carried out under various conditions, such as concentration and velocity of water solution ranging between 0∼20 wt%, 1.5∼2.5 m/s, respectively. And elbows with 4 different angles of 30$^{\circ}$, 45$^{\circ}$, 90$^{\circ}$, 180$^{\circ}$. The differential pressure and IPF (ice packing factor) between the pipe entry and exit were measured. The tendency of pressure loss and outlet IPF in elbow is that the pressure loss was reduced as concentration and flow velocity of water solution is increased, and low value appeared at 10 wt% and 2.5 m/s. The variation of outlet IPF was compared with the inlet IPF in the range of $\pm$20%.

직접 수송 루프에서 아이스슬러리의 열전달 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer Characteristics of Ice Slurry at Direct Transportation Loop)

  • 이동원;김정배
    • 에너지공학
    • /
    • 제19권4호
    • /
    • pp.234-239
    • /
    • 2010
  • 원형 파이프를 유동하는 6.5% EG 수용액으로부터 만들어진 아이스슬러리의 열전달 특성을 분석하기 위한 실험을 수행하였다. 실험 장치의 시험부는 13.84 mm 내경과 1,500 mm의 길이를 가진 동관으로 제작되었다. 아이스슬러리는 시험부 주변에 이중관 형태로 만들어진 원형관 내부를 유동하는 온수에 의해 가열되었다. 본 연구의 실험에 적용된 IPF와 질량 유속은 각각 0 ~ 25% 그리고 1000 ~ 3,000 kg/$m^2s$의 범위이었고, 온수의 온도와 유량은 일정하게 유지하였다. 측정된 열전달량은 질량 유량과 IPF가 증가함에 따라 증가하였으나, IPF의 영향은 높은 질량 유량에서는 작은 것으로 나타났다. 낮은 질량유량에서는 열전달 계수의 급격한 상승이 15 ~ 20%의 IPF에서 나타났다. 마지막으로 측정된 열전달계수는 기존의 열전달상관식들에 의해 계산된 열전달계수와 비교하여 제시하였다.