• 제목/요약/키워드: IPC 자동분류

검색결과 8건 처리시간 0.037초

딥러닝-규칙기반 병행 모델을 이용한 특허문서의 자동 IPC 분류 방법 (Hybrid Approach Combining Deep Learning and Rule-Based Model for Automatic IPC Classification of Patent Documents)

  • 김용일;오유리;심우철;고봉수;이봉건
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.347-350
    • /
    • 2019
  • 인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.

  • PDF

특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류 (IPC Multi-label Classification based on Functional Characteristics of Fields in Patent Documents)

  • 임소라;권용진
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.77-88
    • /
    • 2017
  • 최근 지식과 정보가 가치를 생산하는 지식기반사회로 접어들면서 지식재산권의 대표적인 형태인 특허에 대한 중요성이 매우 높아지고 있으며 출원되는 특허의 양도 매년 증가하고 있다. 방대한 양의 특허정보를 효과적으로 이용하기 위해서 특허문서를 그 발명의 기술적 주제에 따라 적절하게 분류하는 것이 필요하며 이를 위해 IPC(International Patent Classification)가 주로 사용되고 있다. 현재 주로 사람의 손으로 이뤄지는 특허문서의 IPC 분류과정의 효율성을 높이기 위하여 다양한 데이터마이닝과 기계학습 알고리즘을 기반으로 IPC 자동분류에 관한 연구들이 수행되어 왔다. 하지만 기존의 IPC 자동분류에 관한 연구의 대부분은 특허문서의 구조적 특징과 같은 특허문서 고유의 데이터 특성에 대한 고려보다는 다양한 기계학습 알고리즘을 특허문서로 적용하는 것에 초점을 맞춰왔다. 이에 본 논문에서는 IPC 자동분류를 위해 특허문서의 특징과 구조적 필드의 역할을 기반으로 특허문서 분류에 영향을 끼치는 두 가지 필드, 기술분야 및 배경기술 필드의 활용을 제안한다. 그리고 특허문서가 동시에 다수의 IPC 분류코드를 가지는 점을 반영하여 다중 레이블 분류(multi-label classification) 모델을 구축한다. 또한 IPC 다중 레이블 분류의 실제 현장에서의 적용 가능성 확인을 위해 630개의 범주를 가지는 IPC 서브클래스 레벨까지 분류 가능한 수법을 제안한다. 이를 위해 국내에서 등록된 564,793건의 특허문서를 대상으로 특허문서의 구조적 필드의 영향을 확인하기 위한 IPC 다중 레이블 분류 실험을 수행하였고, 그 결과 제목, 요약, 청구항, 기술분야 및 배경기술 필드를 활용한 실험에서 87.2%의 싱글매치 정확도를 얻었다. 이를 통해 기술분야 및 배경기술 두 필드가 IPC 서브클래스 레벨까지의 다중 레이블 분류의 정확도를 향상시키는데 중요한 역할을 하고 있음을 확인하였다.

Doc2Vec을 이용한 특허 문서 자동 분류 (Automatic Classification of Patent Documents Using Doc2Vec)

  • 송진주;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.239-241
    • /
    • 2019
  • 지식과 정보의 중요성이 강조되는 지식기반사회에서는 지식재산권의 대표적인 유형인 특허의 중요성이 날로 높아지고 있고, 그 수 또한 급증하고 있다. 특허 문서의 효과적 검색과 이용을 위해서는 새롭게 출원되는 특허 문서의 체계적인 분류 작업이 선행되어야 하고, 따라서 방대한 양의 특허 문서를 자동으로 분류해주는 시스템이 필요하다. 본 연구에서는 Doc2Vec 모델을 이용하여 국내 특허 문서의 특징(feature)을 추출하고, 추출된 특징을 바탕으로 한 특허 문서의 자동 분류 모형을 제안한다. 먼저 국내에 등록된 31,495 건의 특허 문서의 IPC(International Patent Classification)와 요약정보를 바탕으로 Doc2Vec 모델을 구축하였다. 구축된 Doc2Vec 모델을 통하여 훈련데이터의 특징을 추출한 후, 이 특징 벡터를 이용하여 분류기를 학습하였다. 마지막으로 Doc2Vec 모델을 이용하여 실험데이터의 특징 벡터를 추출하고 분류기의 성능을 실험한 결과, 43%의 분류 정확도를 얻었다. 이를 통해, 특허 문서 분류 문제에 Doc2Vec 모델의 사용 가능성을 확인할 수 있었다.

특허문서의 IPC 분류를 위한 데이터 변환 및 통합 (Pre-processing for IPC Classification of Patent Documents)

  • 박수현;김진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.367-368
    • /
    • 2023
  • 4차 산업혁명으로 다양한 기술과 아이디어가 생겨나고 있고, 이를 보호하기 위한 특허는 그 등록 건수가 매년 증가하는 추세이다. 그러나 현재 특허문서를 분류하는 과정을 수동으로 진행하고 있기에 이를 자동으로 진행할 수 있는 분류기를 생성할 필요를 느꼈고, 본 논문에서는 특허문서를 분류기에 적용할 데이터의 전처리 과정 중 데이터 변환과 통합 과정을 다루었다.

한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구 (A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification)

  • 이재성;전승표;유형선
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.221-241
    • /
    • 2018
  • 지식사회에 들어서며 새로운 형태의 자본으로서 정보의 중요성이 강조되고 있다. 그리고 기하급수적으로 생산되는 디지털 정보의 효율적 관리를 위해 정보 분류의 중요성도 증가하고 있다. 본 연구에서는 기업의 기술사업화 의사결정에 도움이 될 수 있는 맞춤형 정보를 자동으로 분류하여 제공하기 위하여, 기업의 사업 성격을 나타내는 한국표준산업분류(이하 'KSIC')를 기준으로 정보를 분류하는 방법을 제안하였다. 정보 혹은 문서의 분류 방법은 대체로 기계학습을 기반으로 연구되어 왔으나 KSIC를 기준으로 분류된 충분한 학습데이터가 없어, 본 연구에서는 문서간 유사도를 계산하는 방식을 적용하였다. 구체적으로 KSIC 각 코드별 설명문을 수집하고 벡터 공간 모델을 이용하여 분류 대상 문서와의 유사도를 계산하여 가장 적합한 KSIC 코드를 제시하는 방법과 모델을 제시하였다. 그리고 IPC 데이터를 수집한 후 KSIC를 기준으로 분류하고, 이를 특허청에서 제공하는 KSIC-IPC 연계표와 비교함으로써 본 방법론을 검증하였다. 검증 결과 TF-IDF 계산식의 일종인 LT 방식을 적용하였을 때 가장 높은 일치도를 보였는데, IPC 설명문에 대해 1순위 매칭 KSIC의 일치도는 53%, 5순위까지의 누적 일치도는 76%를 보였다. 이를 통해 보다 정량적이고 객관적으로 중소기업이 필요로 할 기술, 산업, 시장정보에 대한 KSIC 분류 작업이 가능하다는 점을 확인할 수 있었다. 또한 이종 분류체계 간 연계표를 작성함에 있어서도 본 연구에서 제공하는 방법과 결과물이 전문가의 정성적 판단에 도움이 될 기초 자료로 활용될 수 있을 것으로 판단된다.

잠재 의미 색인 기법을 이용한 국제 특허 분류 (International Patent Classificaton Using Latent Semantic Indexing)

  • 진훈태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1294-1297
    • /
    • 2013
  • 본 논문은 기계학습을 통하여 특허문서를 국제 특허 분류(IPC) 기준에 따라 자동으로 분류하는 시스템에 관한 연구로 잠재 의미 색인 기법을 이용하여 분류의 성능을 높일 수 있는 방법을 제안하기 위한 연구이다. 종래 특허문서에 관한 IPC 자동 분류에 관한 연구가 단어 매칭 방식의 색인 기법에 의존해서 이루어진바가 있으나, 현대 기술용어의 발생 속도와 다양성 등을 고려할 때 특허문서들 간의 관련성을 분석하는데 있어서는 단어 자체의 빈도 보다는 용어의 개념에 의한 접근이 보다 효과적일 것이라 판단하여 잠재 의미 색인(LSI) 기법에 의한 분류에 관한 연구를 하게 된 것이다. 실험은 단어 매칭 방식의 색인 기법의 대표적인 자질선택 방법인 정보획득량(IG)과 카이제곱 통계량(CHI)을 이용했을 때의 성능과 잠재 의미 색인 방법을 이용했을 때의 성능을 SVM, kNN 및 Naive Bayes 분류기를 사용하여 분석하고, 그중 가장 성능이 우수하게 나오는 SVM을 사용하여 잠재 의미 색인에서 명사가 해당 용어의 개념적 의미 구조를 구축하는데 기여하는 정도가 어느 정도인지 평가함과 아울러, LSI 기법 이용시 최적의 성능을 나타내는 특이값의 범위를 실험을 통해 비교 분석 하였다. 분석결과 LSI 기법이 단어 매칭 기법(IG, CHI)에 비해 우수한 성능을 보였으며, SVM, Naive Bayes 분류기는 단어 매칭 기법에서는 비슷한 수준을 보였으나, LSI 기법에서는 SVM의 성능이 월등이 우수한 것으로 나왔다. 또한, SVM은 LSI 기법에서 약 3%의 성능 향상을 보였지만 Naive Bayes는 오히려 20%의 성능 저하를 보였다. LSI 기법에서 명사가 잠재적 의미 구조에 미치는 영향은 모든 단어들을 내용어로 한 경우 보다 약 10% 더 향상된 결과를 보여주었고, 특이값의 범위에 따른 성능 분석에 있어서는 30% 수준에 Rank 되는 범위에서 가장 높은 성능의 결과가 나왔다.

개인화 된 특허 분류 시스템 사례 연구 (A Case Study on Personalized Patent Classification System)

  • 서형국;최광선;안한준;최성준
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.241-245
    • /
    • 2006
  • 개인화 된 특허 분류 시스템은 기존의 자동 분류 및 특허 문서의 특성, 그리고 분류 체계의 개인화를 고려하여 접근해야 한다. 본 논문에서는 개인화 된 특허 분류 시스템을 구축하는데 있어 개인화된 분류 체계 및 모델의 구축, 특히 분류체계 구축에 있어서의 자동화에 초점을 두었다. 우리는 특히 분류체계 구축 자동화에 있어 특허 문서의 기존 분류체계인 IPC 및 문서 클러스터링을 활용하였다. 다음으로 이를 기반으로 한 구축 시스템 사례를 들었다. 구축 후 나타난 정성적 문제점을 분석해보고, 분석 결과를 향후 연구 방향으로 삼고자 한다.

  • PDF

웹기반 지능형 기술가치평가 시스템에 관한 연구 (A Study on Web-based Technology Valuation System)

  • 성태응;전승표;김상국;박현우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.23-46
    • /
    • 2017
  • 2000년대 이전부터 북미 유럽의 선진국을 중심으로 특정 기업이나 사업(프로젝트)에 관한 가치를 평가하는 사례는 있어 왔으나, 개별 기술(특허)의 경제적 가치를 산정하는 체계나 방법론은 국내를 중심으로 최근 들어 활성화되어 왔다. 이러한 기술가치평가 분야는 기술이전(거래), 현물출자, 사업타당성 분석, 투자유치, 세무/소송 등의 다양한 용도로 활용되고 있다. 물론 기술보증기금의 KTRS, 발명진흥회의 SMART 3.1과 같이, 평가대상기술에 대한 기술력(등급) 평가 혹은 특허등급평가를 정성적으로 수행하는 온라인 시스템은 존재해 왔으나, 대상기술의 정량적인 가치금액까지 산출해 주는 웹기반 지능형 기술가치평가 시스템은 한국과학기술정보연구원(KISTI)에 의해 유일하게 개발 및 공식 오픈되어 확산 활용되고 있다. 본 고에서는 KISTI에서 개발 운영중인 웹기반 'STAR-Value' 시스템을 중심으로, 탑재된 방법론 및 평가모델의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)가 어떻게 연계 활용되는지를 소개한다. 특히 미래에 발생할 경제적 수익을 추정하여 현재가치화하는 소득접근법 기반의 대표 모델인 현금흐름할인(DCF) 모델과 특정 로열티율을 기반으로 로열티수입료의 현재가치를 기술료 대가로 산정하는 로열티절감모델을 포함한 6개 모델, 그리고 관련 지원정보(기술수명, 기업(업종)재무정보, 할인율, 산업기술요소 등)의 데이터 기반 연계 방식에 대해 살펴본다. STAR-Value 시스템은 평가대상기술에 대한 국제특허분류(IPC) 혹은 한국표준산업분류(KSIC) 등의 분류 정보로부터 기술순환주기(TCT) 지수, 유사업종(혹은 유사기업)의 매출액 성장률 및 수익성 데이터, 업종별 가중평균자본비용(WACC) 및 산업기술요소 지수 등 메타데이터값을 자동적으로 불러오고 여기에 조정요인을 반영하여 기술가치의 산출결과가 높은 신뢰성 및 객관성을 가지도록 한다. 나아가 대상기술의 잠재적 시장규모와 해당 사업화주체의 시장점유율에 대한 정보까지 보유 재무데이터 기반으로 참조값을 제시하거나 기존에 완료된 평가사례 축적 기반으로 업종별 유사 기술의 가치범위값을 제시해 준다면, 본 시스템이 보다 지능형으로 지원 모듈을 연계 활용하고 실시간으로 손쉽게 고(高)정확도의 기술가치범위를 제시해 줄 수 있을 것으로 기대된다. 본 고에서는 웹기반 STAR-Value 시스템이 참조데이터 기반으로 지능형 연계를 수행하도록 해주는 모형선택 가이드라인 지원기능, 기술가치범위 추론 지원기능, 유사기업 선정 기반의 시장점유율 산정 지원기능의 내부 로직 구성을 설명한다. 상기 지원기능을 통해 비전문가(또는 초보자) 수준에서 최적의 평가모형 선택, 기술가치 범위 추론, 유사기업 선택 및 시장점유율 산정에 대한 정보지원이 데이터 사이언스 및 기계학습 기반으로 수행될 수 있다. 본 연구는 기술가치평가 분야의 이론적 타당성을 평가실무에서 활용할 수 있는 평가모델 및 지원정보를 실제 탑재한 웹기반 시스템의 소개에 의미가 있으며, 추가적으로 보다 객관적이고 손쉬운 지능형 지원시스템의 활용성을 높임으로써, 앞으로 기술사업화의 제 분야에서 다양하게 활용할 수 있을 것으로 기대된다.