• 제목/요약/키워드: IOU

검색결과 51건 처리시간 0.02초

움직임 벡터 기반 파티클 필터를 이용한 비트스트림 상에서의 객체 추적 (Object Tracking on Bitstreams Using a Motion Vector-based Particle Filter)

  • 이종석;오승준
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.409-420
    • /
    • 2018
  • 본 논문은 비트스트림 상에서 객체 추적을 위한 움직임 벡터 기반 파티클 필터(Motion Vector-based Particle Filter: MVPF)와 이를 이용한 객체 추적 시스템을 제안한다. MVPF는 일반적인 파티클 필터의 전이 모델과 관측 모델에 움직임 벡터를 사용하여 파티클의 개수를 유지하면서 정확도를 향상시킨다. 제안하는 객체 추적 시스템에서는 비트스트림에서 추출한 움직임 벡터의 히스토그램을 이용하여 객체의 상태를 예측한다. 제안하는 객체 추적 방법의 성능 평가를 위하여 MPEG 시험 영상과 VOT2013 영상에 적용하였을 때 기존 방법들보다 정확도, F-Measure, IOU(Intersection Of Union) 측면에서 평균적으로 각각 약 30%, 17%, 17% 증가하였다. 주관적 성능 평가를 위하여 추적결과를 박스(box) 형태로 표시하여 비교하였을 때 제안하는 방법이 모든 시험 영상에 대하여 기본 방법들보다 강인하게 객체를 추적한다.

CAM과 Selective Search를 이용한 확장된 객체 지역화 학습데이터 생성 및 이의 재학습을 통한 WSOL 성능 개선 (Expanded Object Localization Learning Data Generation Using CAM and Selective Search and Its Retraining to Improve WSOL Performance)

  • 고수연;최영우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권9호
    • /
    • pp.349-358
    • /
    • 2021
  • 최근 CAM[1]을 이용해서 이미지의 객체에 대한 주의 영역 또는 지역화(Localization) 영역을 찾는 방법이 WSOL의 연구로서 다양하게 수행되고 있다. CAM을 이용한 객체의 히트(Heat) 맵에서 주의 영역 추출은 객체의 특징이 가장 많이 모여 있는 영역만을 주로 집중해서 객체의 전체적인 영역을 찾지 못하는 단점이 있다. 여기서는 이를 개선하기 위해서 먼저 CAM과 Selective Search[6]를 함께 이용하여 CAM 히트맵의 주의 영역을 확장하고, 확장된 영역에 가우시안 스무딩을 적용하여 재학습 데이터를 만든 후, 이를 학습하여 객체의 주의 영역이 확장되는 방법을 제안한다. 제안 방법은 단 한 번의 재학습만이 필요하며, 학습 후 지역화를 수행할 때는 Selective Search를 실행하지 않기 때문에 처리 시간이 대폭 줄어든다. 실험에서 기존 CAM의 히트맵들과 비교했을 때 핵심 특징 영역으로부터 주의 영역이 확장되고, 확장된 주의 영역 바운딩 박스에 대한 Ground Truth와의 IOU 계산에서 기존 CAM보다 약 58%가 개선되었다.

잔차 연결의 조건부 생성적 적대 신경망을 사용한 시맨틱 객체 분할 (Semantic Object Segmentation Using Conditional Generative Adversarial Network with Residual Connections)

  • ;;;강현수;서재원
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1919-1925
    • /
    • 2022
  • 본 논문에서는 시맨틱 분할을 위한 조건부 생성적 적대 신경망 기반의 이미지 대 이미지 변환 접근법을 제안한다. 시맨틱 분할은 동일한 개체 클래스에 속하는 이미지 부분을 함께 클러스터링하는 작업이다. 기존의 픽셀별 분류 방식과 달리 제안하는 방식은 픽셀 회귀 방식을 사용하여 입력 RGB 이미지를 해당 시맨틱 분할 마스크로 구문 분석한다. 제안하는 방법은 Pix2Pix 이미지 합성 방식을 기반으로 하였다. 잔차 연결이 훈련 프로세스를 가속화하고 더 정확한 결과를 생성하므로 생성기 및 판별기 아키텍처 모두에 대해 잔여 연결 기반 컨볼루션 신경망 아키텍처를 사용하였다. 제안하는 방법은 NYU-depthV2 데이터셋를 이용하여 학습 및 테스트 되었으며 우수한 mIOU 값(49.5%)을 달성할 수 있었다. 또한 시맨틱 객체분할 실험에서 제안한 방법과 현재 방법을 비교하여 제안한 방법이 기존의 대부분의 방법들보다 성능이 우수함을 보였다.

핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가 (Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images)

  • 이민관;박찬록
    • 한국방사선학회논문지
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2024
  • You only look once v5 (YOLOv5)는 객체 검출 과정에 우수한 성능을 보이고 있는 딥러닝 모델 중 하나다. 그러므로 본 연구의 목적은 양전차방출단층촬영 팬텀 영상에서 다양한 하이퍼 파라미터에 따른 YOLOv5 모델의 성능을 평가했다. 데이터 세트는 500장의 QIN PET segmentation challenge로부터 제공되는 오픈 소스를 사용하였으며, LabelImg 소프트웨어를 사용하여 경계박스를 설정했다. 학습의 적용된 하이퍼파라미터는 최적화 함수 SDG, Adam, AdamW, 활성화 함수 SiLu, LeakyRelu, Mish, Hardwish와 YOLOv5 모델 크기에 따라 nano, small, large, xlarge다. 학습성능을 평가하기 위한 정량적 분석방법으로 Intersection of union (IOU)를 사용하였다. 결과적으로, AdmaW의 최적화 함수, Hardwish의 활성화 함수, nano 크기에서 우수한 객체 검출성능을 보였다. 결론적으로 핵의학 영상에서의 객체 검출 성능에 대한 YOLOV5 모델의 유용성을 확인하였다.

Yolo 를 이용한 교통량 측정 및 차종 인식 정확도 향상 (A Study of Traffic Detection and Classification using Yolo)

  • 김청화;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.80-82
    • /
    • 2019
  • 드론은 좁은 장소나, 도로 위에서도 자유롭게 운용할 수 있다는 등의 장점으로 인해 점차 교통 모니터링 분야에 서도 널리 쓰이고 있다. 교통 모니터링을 통해 교통관제가 가능하며, 교통혼잡 해소에 활용할 수 있다. 교통량 확인을 위하여 기존에는 hand-crafted 기반의 방법들이 사용되었는데, 이러한 방법들은 조명이나 촬영위치에 취약하다. 따라서 이러한 문제를 해결하기 위해 본 논문에서는 딥러닝 기반의 교통량 확인 알고리즘을 제안하였다. 본 논문에서는 드론의 촬영 환경과 비슷한 환경의 도로 데이터를 수집하였다. 정확도를 좀 더 높이기 위해, 데이터 augmentation 을 하였다. 생성된 데이터를 이용하여 학습을 진행하였고, 학습 결과 97%의 정확도가 나옴을 확인하였다. 테스트 데이터에 대한 정확도 측정은 [250 pixel 이상] X [250 pixel 이상] 크기의 객체에 대해서 IOU 0.3 기준으로 측정되었다.

  • PDF

140kV, 20mA급 Pilot 집진기용 고압 펄스 전원장치 개발 (Development of 140kV, 20mA Rated High Voltage Pulsed Power System for Pilot EP)

  • 김원호;강유리;이광학;김종수;임근희;김철우
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권2호
    • /
    • pp.73-78
    • /
    • 2001
  • With the increasing demands for clean environment, development of air cleaning systems has been received increasing attention. One of the key technologies in the electrostatic precipitator(EP) is high voltage pulsed power supply, which affects the performance of the overall system. In this study, a high voltage microsecond pulse power supply for the pilot EP is developed. The power supply has a dc source and a pulsed one. The ratings of the dc and the pulse source are 60kV and 70kV respectively. The width of pulse voltage is 140us and the maximum pulse repetition frequency is 200Hz.

  • PDF

잿물로 매염처리된 소방염포의 물성에 관한 연구 (A Study on the Physical Properties of Sappan Wood Dyeing Fabrics Treated by Rice Straw Ash Solution)

  • 주영주
    • 한국의류학회지
    • /
    • 제22권6호
    • /
    • pp.609-609
    • /
    • 1998
  • This paper surveys the effect of rice straw ash solution to the physical properties of Sappan Wood dyeing fabrics. In the quantitative analysis of rice straw ash solution, the quantities of absorbed ingredients in fabrics were increased by bath pull treatment but the amount of absorption(K/S value) was increased by bath pH4.5 treatment. This is related to the metal ion. Among the metal ion, effect of Fe iou and Al ion were related. In case added extracted dye solution to mordants, the color dye solution became dark and increased reddish. The changes of mechanical properties of fabrics tensile resilience, bending rigidity(B), compressional resilience(RC) were increased. Generally mechanical properties were increased by rice straw ash solution treatment, specially bath pH9 treatment. Rice straw ash solution treatment of dyeing fabrics made the improvement in tensile strength and elongation and in the amount of absorption, dye ability, color fastness, mechanical properties, tensile strength, elongation.

잿물로 매염처리된 소방염포의 물성에 관한 연구 (A Study on the Physical Properties of Sappan Wood Dyeing Fabrics Treated by Rice Straw Ash Solution)

  • 주영주
    • 한국의류학회지
    • /
    • 제22권6호
    • /
    • pp.699-705
    • /
    • 1998
  • This paper surveys the effect of rice straw ash solution to the physical properties of Sappan Wood dyeing fabrics. In the quantitative analysis of rice straw ash solution, the quantities of absorbed ingredients in fabrics were increased by bath pull treatment but the amount of absorption(K/S value) was increased by bath pH4.5 treatment. This is related to the metal ion. Among the metal ion, effect of Fe iou and Al ion were related. In case added extracted dye solution to mordants, the color dye solution became dark and increased reddish. The changes of mechanical properties of fabrics tensile resilience, bending rigidity(B), compressional resilience(RC) were increased. Generally mechanical properties were increased by rice straw ash solution treatment, specially bath pH9 treatment. Rice straw ash solution treatment of dyeing fabrics made the improvement in tensile strength and elongation and in the amount of absorption, dye ability, color fastness, mechanical properties, tensile strength, elongation.

  • PDF

Series Hybrid Active Filter

  • 김원호;김종수;강유리;임근회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.271-273
    • /
    • 1995
  • Hybrid active filters utilize passive filters to reduce the voltage rating and hence the VA rating of the active filter converter. A novel hybrid active filter topoloty to minimize utility current harmonics at high power levels is presented in this paper. The proposed topology combines both passive and active filters to obtain the lowest converter VA rating as compared to the converter rating in the active filter and the series-active hybrid filter configurations. This is demonstrated with experimental results from a laboratory model. Simulation results showing the effect of passive filter impedance are presented.

  • PDF

어텐션 중심을 이용한 글자 단위 영역 검출 (Character-level Region Detection Using Attention Center)

  • 김지인;정창성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.952-953
    • /
    • 2019
  • 최근 딥러닝으로 진행되는 광학 문자 인식 분야는 대부분 단어 단위로 인식하는 것으로 글자 단위의 영역을 검출하는 데에는 적합하지 못하다. 본 연구는 각 글자의 영역을 검출하기 위해 기존의 딥러닝을 이용한 광학 문자 인식 절차인 단어 분리 과정과 단어 인식 과정을 유지하면서 어텐션 중심을 이용하여 각 글자의 영역을 보다 정확하게 검출하는 것을 목표로 한다. 제안하는 모델은 CRAFT 와 Attention Network 를 사용한 OCR 과정을 확장한 모델로 각 단어 문자열 결과물에 각 글자의 영역을 추가로 나타내게 되며 각 글자와 라벨 간의 IOU 평균은 0.671 로 나타났다.