• Title/Summary/Keyword: INWARD $1{\frac{1}{2}}$ SOMERSAULT

Search Result 1, Processing Time 0.016 seconds

A Kinematics Analysis of Inward 1½ Somersault in Platform dives (플랫폼 다이빙 뒤로서서 앞으로뛰기 1½ 회전동작의 운동학적 분석)

  • Lee, Jong-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.139-149
    • /
    • 2006
  • This study is to analyze the kinematic variables of inward $1{\frac{1}{2}}$ somersault in platform diver. For the manner, 3 people form the national diving team in the year 2000were chosen as the subjects and two S-VHS video cameras set in 60frames/sec were used for recording their motions. Coordinated raw positions data through digitizing are smoothing by butter-worth's low-pass filterin method at a cut off frequency 6.0Hz. and the direct linear transformation(DLT) method was employed to obtain 3-D position coordinates. The conclusions were as follows. However, horizontal distance which is the change of the COG, form the point of the jump to the point of Event 3 where the player is out of the board range completely, Subject B showed 105.1cm and 71.1cm of the vertical distance which are shorter horizontal distance and higher vertical distance, thus, took a great advantage of the position to prepare for the entry. Therefore, if a player takes higher position by speeding up the vertical velocity at the moment of the jumping off the board, and stays in the air longer, the player can have more time to show his skill. Because of the use of the characteristics of the inward somersault, keeping the safe distance form the board is important but in order to higher the completeness, it is ideal to keep the horizontal distance little over 100cm. Also, the angles of shoulder and elbow from Event 1 to 4, depending on swing of the arms, motions in the air, getting ready for the entry, showed some difference individual by individual, according to the velocity of the thigh and shank showed much difference while getting ready and take-off, and it's because of the individual's different bending and straightening for horizontal and vertical distance.