• Title/Summary/Keyword: INSOLE

Search Result 182, Processing Time 0.028 seconds

Effect of Space Fabric Type Air Insole Pressure difference on Balance to Normal Adults (공간직물형 에어 인솔의 공기압 차이가 젊은 성인의 균형 능력에 미치는 영향)

  • Kim, Gi-Chul;Lee, Jeon-Hyeong;Kim, Sang-Su;Nam, Hue-Hyeong
    • PNF and Movement
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Purpose: This study examined the effects of space fabric type air insole pressure differences on young adults' dynamic balance ability. Method: The subjects of this study were 17 young female adults without musculoskeletal system disease. Balance ability was measured by dividing the subjects into three groups: an experimental group which did not wear an air insole (insole-off group), an experimental group which wore an air insole to which air pressure of $0.55kg/cm^2$ was applied (insole-0.55 group), and an experimental group which wore an air insole to which air pressure of $0.75kg/cm^2$ was applied (insole-0.75 group). For dynamic balance, the subjects stood on a balance pad, and perimeter length and medium speed were measured three times. The averaged values were recorded and statistically processed. Result: There were significant differences in average speed, and the insole-0.75 group's average speed decreased compared to the insole-off group and the insole-0.55 group. Although the total movement distance did not statistically differ, the insole-75 group's movement distance decreased compared to the insole-off group and the insole-0.55 group. Conclusion: Application of a space fabric type air insole, in particular insole-0.75, was helpful in improving balance ability. This is considered to occur because the space fabric structure was conducive to decreasing sway and producing balance.

Influence of Heel Insole and Visual Control on Body Sway Index with High-heeled Shoes (뒤꿈치 인솔착용과 시각통제 유무가 하이힐 착용 시 균형관련 지수에 미치는 영향)

  • Yoon, Jung-Gyu
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.407-413
    • /
    • 2014
  • PURPOSE: We investigated the influence of heel insole and visual control on body sway index with high-heeled shoes. METHODS: The subjects of this study were 61 healthy students. None of the participants had any orthopedic or neurologic alterations. C90 area, C90 angle, trace length, sway average velocity were measured using a force plate by BT4. The variables were measured both with insole and without insole when wearing high-heeled shoes under the conditions of eyes open and eyes closed. The collected data were analyzed using the Kolmogorov-Smirnov test and paired t-test. RESULTS: When wearing high-heeled shoes with insole under the conditions of eyes open, trace length, C90 area, velocity were significantly more decreased than without insole (p<.01). When wearing high-heeled shoes with insole under the conditions of eyes closed, only C90 area was significantly more decreased than without insole (p<.05). When wearing high-heeled shoes with insole under the conditions of eyes open, trace length, C90 area, velocity were significantly more decreased than under the conditions of eyes closed (p<.01). CONCLUSION: The present study demonstrates that the use of high-heeled shoes with insole supported from heel to midfoot more increased static balance than without insole under the conditions of eyes open.

The Effects of the Insole Types on Lower Leg Muscle Activity during Treadmill Walking (트레드밀 걷기 동안 인솔형태가 하퇴 근육의 근 활성에 미치는 영향)

  • Park, Jang-Sung;Seo, Sam-Ki;Lee, Sang-Ho;Jung, Hwa-Su;Lim, Jae-Heon
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.8 no.2
    • /
    • pp.33-37
    • /
    • 2010
  • Purpose : We investigated the effects of the insole types on lower leg muscle activation during treadmill walking. The three insole types investigated for this study were normal insole, medial wedge insole, and viscoheel. Methods : Participants were assigned into three groups. People with foot transformation were excluded from this study. Each participant walked for ten minutes. The first day we applied a normal insole. On the second day, a medial wedge insole was applied. Finally, on the last day a viscoheel was applied. After walking on a treadmill for ten minutes, we measured muscle activation in lower leg muscles (gastrocnemius and tibialis anterior). Surface electromyography (EMG) was used to measure muscle activity. The data were analyzed using one-way analysis of variance (ANOVA) with repeated measures to determine the statistical significance. Results : The results of this study were summarized as follows. While walking on the treadmill, root mean square (RMS) values of the gastrocnemius when the viscoheel was applied were significantly lower than the other insole types. There was no significant difference for the RMS values for the tibialis anterior using viscoheel. The normal insole and viscoheel insole were significantly different in a post hoc analysis. However, there was no significant difference for normal insole and medial wedge insole. Conclusion : Using a viscoheel insole decreases muscle activity of the lower leg. Therefore, in conclusion, the viscoheel insole type reduces the load on the lower leg during walking.

Custom-made Golf Insole Recommender System for Optimizing The Foot Balance During Golf Swing

  • Lee, Kyung-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.89-95
    • /
    • 2015
  • In this paper, we propose the method and development of custom-made golf insole recommender system to optimize the foot balance during golf swing. This system development procedures are as follows : (1) Using the measured data of the golf swing, the analysis of the individual golf hitting and balance will be done. (2) Based on the analysis results, the system will recommend the golf custom-made insole to optimize the individual balance using recommender algorithm. (3) After the golf custom-made insole is recommended, the modeling and design of the recommended insole is processed. Golf custom-made insole will be possible to reduce the excessive shaking and increase the lower-body supporting force. Therefore, we have expected that the recommended insole will improve the swing results through the optimization of golf swing balance. In the future, it is necessary to secure the higher validity and reliability through the more diverse experiments and research.

The Research of the Insole Suitability in Accordance with Foot Characteristics of Women (성인 여성의 발 특성에 따른 인솔 적합성 연구)

  • Choi Soon-Bok;Lee Won-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.6
    • /
    • pp.783-792
    • /
    • 2005
  • The purpose of this research is to develop appropriate Insole according to foot characteristics of female adults. This research concentrates on proving the effectiveness of Insole on resolving foot discomforts by analyzing the differences between the fitting and foot pressure before and after wearing Insole. Among 216 female testers of previous research, six testers wear selected and placed into six different groups classified according to foot discomforts and foot characteristics. After wearing Insole, the results indicates that the entire groups represented the improvement of fitting and the mitigation of foot discomfort. The results of foot pressure experiment shows that the maximum pressure of foot spreads out evenly after wearing Insole, which indicates the effectiveness of Insole. This efficacy works particularly well for foot testers of second and sixth group. The results indicate that group 6, which consist of the flat-footed and the old, have more noticeable effects derived from Insole, whereas group 3 and 5 do not, due to its constitution of people with fairly normal feet. Furthermore, it was evident that maximum pressure played a major role in proving the beneficial effects of Insole, one of which is to scatter the maximum pressure of heel away and lessen the foot pressure of plantar.

Effects of Preferred Arch Height and Hardness of the Insole on Static Arch Height and Ankle Stability (인솔의 아치높이 및 경도 선호도가 정적 아치 높이 및 발목 안정성에 미치는 영향)

  • Sihyun Ryu;Young-Seong Lee;Soo-Ji Han;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • Objective: The purpose of this study was to investigate the differences in static arch height and ankle stability according to the preference for insole height and hardness in the arch area. Method: The study participants were 20 adult males (age: 22.7 ± 1.8 yrs., height: 175.3 ± 4.3 cm, body weight: 72.5 ± 7.7 kg). First, the arch heights of all subjects were measured in static postures (sitting and standing). The inversion and eversion movements of the ankle joint were analyzed during walking (1.3 m/s & 1.7 m/s) and running (2.7 m/s & 3.3 m/s). The variables (static arch height, and inversion and eversion angle of ankle joint) were compared by classifying groups according to the preference for the height and hardness of the arch of the insole. First, it was divided into a high arch insole preference group (HAG, n=8) and a low arch insole preference group (LAG, n=12) according to the preference for the arch height of the insole. Second, it was divided into a high hardness insole preference group (HHG, n=7), medium hardness insole preference group (MHG, n=7), and low hardness insole preference group (LHG, n=6), according to the preference for the arch hardness of the insole. Results: First, the range of motion (ROM) of inversion-eversion at the ankle joint during walking was statistically smaller in HAG than in LAG (p<.05). Second, the arch height change of HHG was statistically greater than that of MHG and LHG (p<.05). Conclusion: In the case of flexible flat feet with a large change in arch height, providing a high hardness arch insole that can disperse foot pressure can improve comfort. It was found that people with high medial and lateral sway of the ankle joint preferred a low arch insole, but it is necessary to differentiate and compare the insole heights of the arch part in detail. In addition, in the case of fast motion such as running, the preference for the arch height and hardness of the insole was not related to the static arch height and ankle stability.

The Effects of Different Angles of Wedged Insoles on Knee Varus Torque in Healthy Subjects

  • Jung, Do-Young;Kwon, Oh-Yun;Yi, Chung-Hwi;Kim, Young-Ho;Kim, Jang-Hwan
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 2004
  • The purpose of this study was to examine the effect of the angle of a wedged insole on knee varus torque during walking. Fifteen healthy subjects were recruited. Knee varus torque was measured using three-dimensional motion analysis (Elite). Knee varus torque was normalized to gait cycle (0%: initial contact; 100%: ipsilateral initial contact) and stance phase (0%: initial contact; 100%: ipsilateral toe off). The average peaks of knee varus torque during the stance phase of the gait cycle according to the different insole angles (10 or 15 degrees) were compared using one-way ANOVA with repeated measures. The results showed that in the early stance phase, the average peak knee varus torque increased significantly for both the medial 10 and 15 degree wedged insole conditions and decreased significantly for both the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p<.05). However, there were no significant differences between the 10 and 15 degree wedged insole conditions with either the medial or lateral wedged insole (p>.05). In the late stance phase, the average peak knee varus torque increased significantly for the medial 10 and 15 degree wedged insole conditions (p<.05), but not for the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p>.05). We suggest that these results may be beneficial for manufacturing foot orthotic devices, such as wedged insoles, to control medial and lateral compartment forces in the knee varus-valgus deformity. Further studies of the effects of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

Effect of the Fatigue to Insole Types During Treadmill Exercise (트레드밀 운동 동안 인솔의 종류가 피로도에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Roh, Jung-Suk;Lee, Kang-Sung
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.17-25
    • /
    • 2004
  • The purpose of this study was to assess the effect of applied insole types to lower extremities muscle fatigue during treadmill exercise. The control group and each different insole type group consisted of ten healthy male subjects. In the control group and each different insole type (soft type; 10 shore, semi-rigid type; 33 shore, rigid type; 50 shore) treadmill exercise was performed in twenty-five minutes. The electromyography (EMG) signals of four muscle (tibialis anterior, gastrocnemius medialis, rectus femoris, biceps femoris) were recording at sampling rate of 1024 Hz during treadmill exercise. The localized muscle fatigue (LMF) can be investigated using power spectral analysis. When did data analysis that excepted initial five minutes. The raw EMG signals was processed using the fast Fourier Transformation (FFT) and the median power frequency value was determined in initial ten second period and in last ten second period. Fatigue index was calculated and collected data were statistically analyzed by SPSS version 10.0 two-way using analysis of variance (ANOVA) with repeated measures ($4{\times}4$) was used to determine the main effect and interaction. Post hoc was performed with least significant difference. A level of significance was .05. Muscles fatigue index were significantly decreased in insole types (p<.05) and not significantly different in muscle (p>.05). Post hoc analysis shows that fatigue index in soft insole type, semi-rigid insole type and rigid insole type were lower than that control group (p=.028, p=.146, p=.095). There were no interaction between insole type and muscles (p>.05). The finding of this study can be used as a fundamental data when insole is applied and insole can be used to decreased of a fatigue during the dynamic exercise.

  • PDF

Individual customized insole model (개인 맞춤형 자동 변형 인솔 모델)

  • Song, Eungyeol;Kim, Kyoungtae;Kim, Sang-hoon;Lee, Sangyoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.323-329
    • /
    • 2016
  • This paper describes an insole FFO(Functional Foot Orthosis) model for comfortable walking by considering weight distribution. There are many ways to make an insole FFO model such as using 3D computer graphics, or plaster manually. Thus, we proposed a standardized way to make an insole model, specifically called, robust and automatically personalized deformable insole model. Our proposed method showed 0.8cm average error compared between our proposed auto-deformable insole model and the other insole model manually deformed by experts. Therefore, our proposed method can be an efficient way to make a customized insole model with small error compared to the manually customized insole model.

A Study on Changes in Biomechanical Characteristics of the Foot with Respect to Wedge-type Insole Thickness (키높이 인솔두께에 따른 족부의 생체역학적 특성변화에 대한 연구)

  • Park, T.H.;Jung, T.G.;Han, D.W.;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.80-90
    • /
    • 2013
  • Recently, functional insoles of wedge-type it is for the young to raise their height inserted between insole and heel cause foot pain and disease. Additionally, these have a problem with stability and excessively load-bearing during gait like high-heel shoes. In this study, we compared the changes in biomechanical characteristics of foot with different insole thickness then we will utilize for the development of the insole with the purpose of relieving the pain and disease. Subjects(male, n = 6) measured COP(center of pressure) and PCP(peak contact pressure) on the treadmill(140cm/s) using F-scan system and different insole thickness(0~50 mm) between sole and plantar surface during gait. Also, we computed changes of stresses at the foot using finite element model with various insole thickness during toe-off phase. COP moved anterior and medial direction and, PCP was increased at medial forefoot surface, $1^{st}$ and $2^{nd}$ metatarsophalangeal, ($9%{\uparrow}$) with thicker insoles and it was show sensitive increment as the insole thickness was increased from 40 mm to 50 mm. Change of the stress at the soft-tissue of plantar surface, $1^{st}$ metatarsal head represents rapid growth($36%{\uparrow}$). Also, lateral moments were increased over the 100% near the $1^{st}$ metatarsal as the insole thickness was increased from 0 mm to 30 mm. And it is show sensitive increment as the insole thickness changed 10 mm to 20 mm. As a result, it was expected that use of excessively thick insoles might cause unwanted foot pain at the forefoot region. Therefore, insole thickness under 30 mm was selected.