• Title/Summary/Keyword: INRIA data set

Search Result 3, Processing Time 0.02 seconds

A Neuro-Fuzzy Pedestrian Detection Method Using Convolutional Multiblock HOG (컨볼루션 멀티블럭 HOG를 이용한 퍼지신경망 보행자 검출 방법)

  • Myung, Kun-Woo;Qu, Le-Tao;Lim, Joon-Shik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1117-1122
    • /
    • 2017
  • Pedestrian detection is a very important and valuable part of artificial intelligence and computer vision. It can be used in various areas for example automatic drive, video analysis and others. Many works have been done for the pedestrian detection. The accuracy of pedestrian detection on multiple pedestrian image has reached high level. It is not easily get more progress now. This paper proposes a new structure based on the idea of HOG and convolutional filters to do the pedestrian detection in single pedestrian image. It can be a method to increase the accuracy depend on the high accuracy in single pedestrian detection. In this paper, we use Multiblock HOG and magnitude of the pixel as the feature and use convolutional filter to do the to extract the feature. And then use NEWFM to be the classifier for training and testing. We use single pedestrian image of the INRIA data set as the data set. The result shows that the Convolutional Multiblock HOG we proposed get better performance which is 0.015 miss rate at 10-4 false positive than the other detection methods for example HOGLBP which is 0.03 miss rate and ChnFtrs which is 0.075 miss rate.

Pedestrian Classification using CNN's Deep Features and Transfer Learning (CNN의 깊은 특징과 전이학습을 사용한 보행자 분류)

  • Chung, Soyoung;Chung, Min Gyo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.91-102
    • /
    • 2019
  • In autonomous driving systems, the ability to classify pedestrians in images captured by cameras is very important for pedestrian safety. In the past, after extracting features of pedestrians with HOG(Histogram of Oriented Gradients) or SIFT(Scale-Invariant Feature Transform), people classified them using SVM(Support Vector Machine). However, extracting pedestrian characteristics in such a handcrafted manner has many limitations. Therefore, this paper proposes a method to classify pedestrians reliably and effectively using CNN's(Convolutional Neural Network) deep features and transfer learning. We have experimented with both the fixed feature extractor and the fine-tuning methods, which are two representative transfer learning techniques. Particularly, in the fine-tuning method, we have added a new scheme, called M-Fine(Modified Fine-tuning), which divideslayers into transferred parts and non-transferred parts in three different sizes, and adjusts weights only for layers belonging to non-transferred parts. Experiments on INRIA Person data set with five CNN models(VGGNet, DenseNet, Inception V3, Xception, and MobileNet) showed that CNN's deep features perform better than handcrafted features such as HOG and SIFT, and that the accuracy of Xception (threshold = 0.5) isthe highest at 99.61%. MobileNet, which achieved similar performance to Xception and learned 80% fewer parameters, was the best in terms of efficiency. Among the three transfer learning schemes tested above, the performance of the fine-tuning method was the best. The performance of the M-Fine method was comparable to or slightly lower than that of the fine-tuningmethod, but higher than that of the fixed feature extractor method.

Design of Pedestrian Detection System Based on Optimized pRBFNNs Pattern Classifier Using HOG Features and PCA (PCA와 HOG특징을 이용한 최적의 pRBFNNs 패턴분류기 기반 보행자 검출 시스템의 설계)

  • Lim, Myeoung-Ho;Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1345-1346
    • /
    • 2015
  • 본 논문에서는 보행자 및 배경 이미지로부터 HOG-PCA 특징을 추출하고 다항식 기반 RBFNNs(Radial Basis Function Neural Network) 패턴분류기과 최적화 알고리즘을 이용하여 보행자를 검출하는 시스템 설계를 제안한다. 입력 영상으로부터 보행자를 검출하기 위해 전처리 과정에서 HOG(Histogram of oriented gradient) 알고리즘을 통해 특징을 추출한다. 추출된 특징은 고차원이므로 패턴분류기 분류 시 많은 연산과 처리속도가 따른다. 이를 개선하고자 PCA (Principal Components Analysis)을 사용하여 저차원으로의 차원 축소한다. 본 논문에서 제안하는 분류기는 pRBFNNs 패턴분류기의 효율적인 학습을 위해 최적화 알고리즘인 PSO(Particle Swarm Optimization)을 사용하여 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시킨다. 사용된 데이터로는 보행자 검출에 널리 사용되는 INRIA2005_person data set에서 보행자와 배경 영상을 각각 1200장을 학습 데이터, 검증 데이터로 구성하여 분류기를 설계하고 테스트 이미지를 설계된 최적의 분류기를 이용하여 보행자를 검출하고 검출률을 확인한다.

  • PDF