• Title/Summary/Keyword: INCLINATION ANGLES

Search Result 233, Processing Time 0.025 seconds

Evaluation of the Elderly Gait Stability Using the Center of Mass and Center of Pressure Inclination Angles (전, 후방 기울기각을 이용한 노인의 보행안정성 평가)

  • Yoon, Suk-Hoon;Kim, Tae-Sam;Lee, Jae-Hun;Ryu, Ji-Seon;Kwon, Young-Hoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.99-106
    • /
    • 2007
  • The gait instability in the elderly has been associated with age-related deterioration in physical strength and reducing the potential for elderly falls requires regular exercise. In 2005, National Center for Injury Prevention and Control(NCIPC) reported that most elderly falls occur during activities in daily living(ADL). To better reveal biomechanic mechanisms underlying age-related degeneration in gait stability, and to enhance the assessment of falls risk, an accurate quantification of a person's balance maintenance during locomotion is needed. Instantaneous orientation of the line connecting COP and COM can characterize whole body position with respect to the supporting foot during gait and the angle between this line and the vertical line passing through the COP known as a good assessment to detect the elderly gait instability. Therefore the purpose of this study was to investigate a 6-month walking exercise effects in reducing elderly fall risk factors by using COP-COM inclination angles. Twenty-two community-dwelling elderly participated this study. The participants performed a walking exercise(3 times/week, 1 hour/visit) for 6 months. Laboratory kinematics during walking was assessed at months 0, 3 and 6. Significant increased in gait velocity was found among periods(p=.011, $1.25{\pm}.03$, $1.32{\pm}.03$, and $1.39{\pm}.04\;m/s$ in 0-, 3-, and 6-month, respectively). Also, significant differences in anterior and posteriror inclination angles were found among the periods(p<.05; posterior inclination angles: $12.8{\pm}2.2$, $11.0{\pm}2.9$, & $10.9{\pm}1.9$; anterior inclination angles: $13.7{\pm}1.7$, $14.6{\pm}3.2$, & $1.46{\pm}.21$ in 0month, 3month, & 6month, respectively). These findings provide evidence of significant reduced fall risk factors of community-living older adults associated with a systematic walking program.

Evaluation of Gait Stability using Medio-Lateral Inclination Angle in Male Adults (좌·우 기울기각도를 이용한 남자 성인의 보행안정성 평가)

  • Chang, Jae-Kwan;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.261-266
    • /
    • 2010
  • Human body is hard to be in perfect balance during walking. Most of time the trunk is supported by one leg and the center of mass(COM) falls to the contralateral side. Thus, dynamic variables such as the velocity of the COM should be considered when gait stability is evaluated. The purpose of this study was to investigate whether the extrapolated center of mass(XCom) which utilized the COM position and its velocity, is appropriate to evaluate gait stability. Ten healthy adults participated in this study and performed 3 different types of gaits(normal(NG), hands on waists(HWG), and hands on shoulders(HSG)) onto 4 different types of obstacle(obstacle height: 0%, 30%, 40% and 50% of leg length). Medio-lateral Com-CoP and XCom-CoP inclination angle were calculated during support phase. For all condition, greater M-L XCoM-CoP inclination angles were found(p<.05) compared with those of matched obstacle height CoM-CoP. Especially, M-L XCoM-CoP inclination angle at 50% height revealed the best condition for monitoring dynamic stability. Significantly increased in M-L XCoM-CoP inclination angle was found(p<.05) as obstacle height increased on NG and HWG.

Numerical Study on the Formation of Tumble Motion in Engine Cylinder (엔진내부 텀블 유동 형성에 대한 수치해석적 연구)

  • Lee, Byoung-Seo;Lee, Joon-Sik;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2233-2238
    • /
    • 2003
  • It is well known that organized vortex rotations swirl and tumble greatly affect the mixing, the combustion and heat transfer processes in engine cylinder. We have developed 3 dimensional numerical simulation codes whose predictions make good agreement with the experimental data. Large eddy simulation based on Smagorinsky subgrid scale model was adopted to describe the turbulence of in-cylinder flows. The tumble motions generated by different inclination angles between valve-port and cylinder head have been calculated. The results show that the angles between direction of induced flow and cylinder walls which the flow collides with play a great role in the formation and generation of tumble motions. Therefore, it is inferred that seat angle and inclination angle are important factors of engine design. In addition, the numerical results of different engine speed -1000 rpm and 3000 rpm are very similar in the flow structure.

  • PDF

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

LARGE EDDY SIMULATIONS OF TUMBLE AND SWIRL FORMATIONS IN ENGINE IN-CYLINDER FLOW

  • Lee, B.S.;Lee, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.415-422
    • /
    • 2006
  • Swirl and tumble flows in an engine in-cylinder have been simulated by using a three-dimensional computational fluid dynamics code, and the results are validated in comparison with experimental data. The large eddy simulation based on the Smagorinsky model and the fractional step method is adopted to describe the turbulence of in-cylinder flows and to save computing time, respectively. The main purpose of this study is connected with the effect of various conditions of intake flows on formation and development of in-cylinder tumble and swirl motions. The engine speeds considered are 1000 rpm and 3000 rpm for intake flows with inclination angles between $-10^{\circ}$ and $20^{\circ}$ at deflection angles of $0^{\circ}$, $22.5^{\circ}$, and $30^{\circ}$. The results are discussed by visualizing flow fields and by evaluating parameters in relation to vortex intensity such as swirl and tumble ratios.

An Ultra-precision Electronic Clinometer for Measurement of Small Inclination Angles

  • Tan, Siew-Leng;Kataoka, Satoshi;Ishikawa, Tatsuya;Ito, So;Shimizu, Yuuki;Chen, Yuanliu;Gao, Wei;Nakagawa, Satoshi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • This paper describes an ultra-precision electronic clinometer, which is based on the capacitive-based fluid type, for detection of small inclination angles. The main parts of the clinometer low-noise electronics are two capacitance measurement circuits for converting the capacitances of the capacitors of the clinometer into voltages, and a differential amplifier for obtaining the difference of the capacitances, which is proportional to the input inclination angle. A 16 bit analog to digital (AD) converter is also embedded into the same circuit board, whose output is sent to a PC via RS-232C, for achieving a small noise level down to tens of ${\mu}v$. A compensation method, which is referred to as the delay time method for shortening the stabilization time of the sensor was also discussed. Experimental results have shown the possibility of achieving a measurement resolution of $0.0001^{\circ}$ as well as the quick measurement with the delay time method.

A Study on the Natural Convection from the Isothermal Square Beam Attached to an Adiabatic Plate (단열판에 부착된 등온 사각비임에서의 자연대류 열전달에 관한 연구)

  • Park, Jae-Lim;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • Steady laminar natural convection heat transfer from the isothermal square beam attached to an adiabatic plate has been studied for various inclination angles of the adiabatic plate and Rayleigh number by using Mach-Zehnder interferometer in air. As the inclination angles change, the different temperature and fluid flow field were obtained by the ascending heated fluid and the adiabatic plate. In this study, the inclination angles were $0^{\circ}$(positive & negative), $45^{\circ}$(positive & negative), and $90^{\circ}$. The maximum total mean Nusselt number value was found at a positive inclination angle ${\theta}=45^{\circ}$.

  • PDF

Determination of Femoral and Tibial Joint Reference Angles in Small-breed Dogs

  • Kim, Jooho;Heo, Suyoung;Na, Jiyoung;Kim, Namsoo;Kim, Minsu;Jeong, Seongmok;Lee, HaeBeom
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.340-345
    • /
    • 2016
  • The present study determined the normal reference ranges for the femoral and tibial joint orientation angles of small-breed dogs. For this purpose, 60 each of cadaveric canine femurs and tibias from normal small-breed dogs (Maltese, Poodle, Shih Tzu, Yorkshire Terrier) were examined with radiographs and photographs. Axial and frontal radiographs and photographs of each bone were obtained, from which anteversion and inclination angles, anatomic lateral proximal and distal femoral angles (aLPFA and aLDFA), mechanical lateral proximal and distal femoral angles (mLPFA and mLDFA), and mechanical medial proximal and distal tibial angles (mMPTA and mMDTA) were measured. The 95% CI for radiographic values of all femurs and tibiae were anteversion angle, $23.4-27.4^{\circ}$; inclination angle, $128.4-130.4^{\circ}$; aLPFA, $117.8-122.1^{\circ}$; aLDFA, $93.7-95.2^{\circ}$; mLPFA $113.8-117.3^{\circ}$; mLDFA $99.2-100.5^{\circ}$; mMPTA $96.8-98.5^{\circ}$; mMDTA $89.4-90.7^{\circ}$. The Maltese had a larger anteversion angle than the Poodle and the Yorkshire Terrier and a larger mLPFA than the Poodle. In the comparison between the radiographs and the photographs, significant differences were found in the anteversion angle, mLPFA, mMPTA, and mMDTA. The established normal reference values might be useful for determining whether a valgus or varus deformity of the femur or the tibia is present and if so, the degree of angular correction needed.

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.

Influence of elastic T-stress on the growth direction of two parallel cracks

  • Li, X.F.;Tang, B.Q.;Peng, X.L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.377-390
    • /
    • 2010
  • This paper studies fracture initiation direction of two parallel non-coplanar cracks of equal length. Using the dislocation pile-up modelling, singular integral equations for two parallel cracks subjected to mixed-mode loading are derived and the crack-tip field including singular and non-singular terms is obtained. The kinking angle is determined by using the maximum hoop stress criterion, or the ${\sigma}_{\theta}$-criterion. Results are presented for simple uniaxial tension and biaxial loading. The biaxiality ratio has a noticeable influence on crack growth direction. For the case of biaxial tension, when neglecting the T-stress the crack branching angle is overestimated for small crack inclination angles relative to the largest applied principal stress direction, and underestimated for large crack inclination angles.