• Title/Summary/Keyword: IMU sensor

Search Result 250, Processing Time 0.021 seconds

Heel Trajectory Analysis Method of Walking using a Wearable Sensor (착용형 센서를 이용한 보행 뒤꿈치 궤적 분석 방법)

  • Hee-Chan Kim;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.731-736
    • /
    • 2023
  • Walking is a periodic motion that contains specific phases and is a basic movement method for humans. Through gait analysis, various musculoskeletal health conditions can be identified. In this study, we propose a calf wearable sensor system that can perform gait analysis without space limitations. Using a ToF(: Time-of-Flight) sensor that measures distance and an IMU(: Inertial Measurement Unit) sensor that measures inclination the heel trajectory of walking was derived by proposed method. In case of abnormal gait with risk of fall, gait is evaluated by analyzing the change pattern of the heel trajectory.

Estimation of Attitude and Position of Moving Objects Using Multi-filtered Inertial Navigation System (이동하는 물체의 자세와 위치를 추정하기 위한 다중 필터 관성 항법 시스템)

  • Hwang, Seo-Young;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2339-2345
    • /
    • 2011
  • This paper proposes a new multi-filtered inertial navigation system to estimate the attitude and position of moving objects. This system has two states, the one is attitude state and the other is position/velocity state. For compensating IMU sensor errors, each of the two states uses a different filter: the attitude state uses the EKF and the position state uses the UPF. The fast and precise characteristics of the EKF have been properly utilized for the attitude estimation, while superior dynamic characteristics of the UPF have been fully adopted for the position estimation. The combination of these two filters in an inertial navigation system improves the system performance to be faster and more accurate. Experimental results demonstrate the superiority of this approach comparing to the conventional ones.

Marionette Control System using Gesture Mode Change (제스처 할당 모드를 이용한 마리오네트 조정 시스템)

  • Cheon, Kyeong-Min;Kwak, Su Hui;Rew, Keun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.150-156
    • /
    • 2015
  • In this paper, a marionette control system using wrist and finger gestures through an IMU sensor is studied. The signals from the sensor device are conditioned and recognized, then the commands are sent to the 8 motors of the marionette via Bluetooth (5 motors control the motion of the marionette, and 3 motors control the location of the marionette). It is revealed that the degree of freedom of fingers are not independent from each other, therefore, some gestures are hardly made. Gesture mode changes for difficult postures of the fingers in cases of a lack of finger DOF are proposed. Therefore, the gesture mode change switches the assignment of gesture as required. Experimental results show that gesture mode change is successful for appropriate postures of a marionette.

Development of Rotational Motion Estimation System for a UUV/USV based on TMS320F28335 microprocessor

  • Tran, Ngoc-Huy;Choi, Hyeung-Sik;Kim, Joon-Young;Lee, Min-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.223-232
    • /
    • 2012
  • For the accurate estimation of the position and orientation of a UUV (unmanned underwater vehicle), a low-cost AHRS (attitude heading reference system) was developed using a low-cost IMU (inertial measurement unit) sensor which provides information on the 3D acceleration, 3D turning rate and 3D earth-magnetic field data in the object coordinate system. The main hardware system is composed of an IMU sensor (ADIS16405) and TMS320F28335, which is coded with an extended kalman filter algorithm with a 50-Hz sampling frequency. Through an experimental gimbal device, good estimation performance for the pitch, roll, and yaw angles of the developed AHRS was verified by comparing to those of a commercial AHRS called the MTi system. The experimental results are here presented and analyzed.

Development of Inertial Measurement Sensor Using Magnetic Levitation

  • Kim, Young D.;Cho, Kyeum R.;Lee, Dae W.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.27-43
    • /
    • 2005
  • An INS(Inertial Navigation System) is composed of a navigation computer and an IMU(Inertial Measurement Unit), and can be applied to estimate a vehicle's state. But the inertial sensors assembled in the IMU are too complicated and expensive to use for the general application purpose. In this study, a new concept of inertial sensor system using magnetic levitation is proposed. The proposed system is expected to replace one single-axis rate or position gyroscope, and one single-axis accelerometer concurrently with a relatively simple structure. A simulation of the proposed system is given to describe the capability of this new concept.

Development of Underwater Vehicle Position Tracking Algorithm by using a Gyro-Doppler Sensor and Ultra Short Base Line (자이로 도플러 센서와 USBL을 통한 수중체 위치추적 알고리즘개발)

  • Kim, Deok-Jin;Park, Dong-Won;Park, Yeon-Sic
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1973-1977
    • /
    • 2006
  • This paper reports the absolute position tracking algorithm of underwater vehicles such as ROV, AUV in global region by fusing sensor informations of IMU, DVL, USBL, DGPS etc. This algorithm is to be used in the position tracking of the 6,000m class deep-sea unmanned underwater vehicle, HEMIRE for scientific exploration.

Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect (레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법)

  • Kim, Eung Ju;Kim, Yong Hun;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.

A Fault Detection Method of Redundant IMU Using Modified Principal Component Analysis

  • Lee, Won-Hee;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.398-404
    • /
    • 2012
  • A fault detection process is necessary for high integrity systems like satellites, missiles and aircrafts. Especially, the satellite has to be expected to detect faults autonomously because it cannot be fixed by an expert in the space. Faults can cause critical errors to the entire system and the satellite does not have sufficient computation power to operate a large scale fault management system. Thus, a fault detection method, which has less computational burden, is required. In this paper, we proposed a modified PCA (Principal Component Analysis) as a powerful fault detection method of redundant IMU (Inertial Measurement Unit). The proposed method combines PCA with the parity space approach and it is much more efficient than the others. The proposed fault detection algorithm, modified PCA, is shown to outperform fault detection through a simulation example.

Periodic Bias Compensation Algorithm for Inertial Navigation System

  • Kim Hwan-Seong;Nguyen Duy Anh;Kim Heon-Hui
    • Journal of Navigation and Port Research
    • /
    • v.28 no.9
    • /
    • pp.803-808
    • /
    • 2004
  • In this paper, an INS compensation algorithm is proposed using the accelerometer from IMU. First, we denote the basic INS algorithm and show that how to compensate the position error when low cost IMU is used. Second, considering the ship's characteristic and ocean environments, we consider with a drift as a periodic external environment change which is affected with exact position. To develop the compensation algorithm, we use a repetitive method to reduce the external environment changes. Lastly, we verify the proposed algorithm through the experiments, where the acceleration sensor is used to acquire real data.

Design and Implementation of BNN-based Gait Pattern Analysis System Using IMU Sensor (관성 측정 센서를 활용한 이진 신경망 기반 걸음걸이 패턴 분석 시스템 설계 및 구현)

  • Na, Jinho;Ji, Gisan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • Compared to sensors mainly used in human activity recognition (HAR) systems, inertial measurement unit (IMU) sensors are small and light, so can achieve lightweight system at low cost. Therefore, in this paper, we propose a binary neural network (BNN) based gait pattern analysis system using IMU sensor, and present the design and implementation results of an FPGA-based accelerator for computational acceleration. Six signals for gait are measured through IMU sensor, and a spectrogram is extracted using a short-time Fourier transform. In order to have a lightweight system with high accuracy, a BNN-based structure was used for gait pattern classification. It is designed as a hardware accelerator structure using FPGA for computation acceleration of binary neural network. The proposed gait pattern analysis system was implemented using 24,158 logics, 14,669 registers, and 13.687 KB of block memory, and it was confirmed that the operation was completed within 1.5 ms at the maximum operating frequency of 62.35 MHz and real-time operation was possible.