• Title/Summary/Keyword: IMU(Inertial Measurement Unit) , Odometer

Search Result 5, Processing Time 0.026 seconds

Design and Implementation of 30" Geometry PIG

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.629-636
    • /
    • 2003
  • This paper introduces the developed geometry PIG (Pipeline Inspection Gauge), one of several ILI (In-Line Inspection) tools, which provide a full picture of the pipeline from only single pass, and has compact size of the electronic device with not only low power consumption but also rapid response of sensors such as calipers, IMU and odometer. This tool is equipped with the several sensor systems. Caliper sensors measure the pipeline internal diameter, ovality and dent size and shape with high accuracy. The IMU (Inertial Measurement Unit) measures the precise trajectory of the PIG during its traverse of the pipeline. The IMU also provide three-dimensional coordination in space from measurement of inertial acceleration and angular rate. Three odometers mounted on the PIG body provide the distance moved along the line and instantaneous velocity during the PIG run. The datum measured by the sensor systems are stored in on-board solid state memory and magnetic tape devices. There is an electromagnetic transmitter at the back end of the tool, the transmitter enables the inspection operators to keep tracking the tool while it travels through the pipeline. An experiment was fulfilled in pull-rig facility and was adopted from Incheon LT (LNG Terminal) to Namdong GS (Governor Station) line, 13 km length.

Integration and Synchronization of Multi Sensors for Mobile Mapping System (모바일 매핑시스템을 위한 멀티 센서 통합 및 동기화 구현 방안 연구)

  • Park, Young-Moo;Lee, Jong-Ki;Sung, Jeong-Gon;Kim, Byung-Guk
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.51-58
    • /
    • 2004
  • Mobile Mapping System is an effective wav to obtain position and image using vehicle equipped with GPS(Global Positioning System), IMU(Inertial Measurement Unit), and CCD camera. It have been used various fields of load facility management, map upgrade and etc. It is difficult to upgrade Mobile Mopping System which is developed from abroad and add other sensors because we don't know the way to integrate and synchronize multi-sensors. In this paper, we present the effective way of the integration and synchronization method for multi sensors we designed and manufactured Synchronization equipment by considering sensors of laser, odometer and etc.

  • PDF

Development Research of Integration and Synchronization of Multi Sensors for Mobile Mapping System (모바일 매핑시스템을 위한 멀티 센서 통합 및 동기화 방안 연구)

  • 박영무;이종기;성정곤;김병국
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.167-172
    • /
    • 2004
  • 모바일 매핑시스템은 차량에 GPS(Global Positioning System), IMU(Inertial Measurement Unit), CCD 카메라 등을 탑재하고 공간 및 속성 정보를 취득하는 효율적인 방법이다. 모바일 매핑시스템은 도로 시설물 관리, 지도 갱신 등 다양한 분야에 이용되고 있다. 국외에서 개발된 모바일 매핑 시스템을 업그레이드하거나 새로운 센서를 추가 하고자 할 때 기존 시스템의 센서 통합 및 동기화 방안을 알 수 없으므로 시스템의 개선 및 향상이 어렵다. 본 연구에서는 모바일 매핑시스템의 개선 및 센서추가를 위해서 모바일 매핑시스템에 기본적으로 필요한 GPS, IMU, 그리고 CCD 카메라 등의 효율적인 통합 및 동기화 구현 방안을 제시하고, 동기화에 필요한 각 센서의 요구사항을 파악한 후 동기화 장비를 설계 및 제작하였다. 또한, 향후 추가될 센서인 레이져, 오도미터(Odometer) 등을 센서가 추가될 경우를 고려하여 통합장비를 설계하였다.

  • PDF

Performance Analysis and Development of the Navigation System for Pipeline Inspection Gauge (배관 진단 시스템을 위한 항법 시스템 개발과 성능 분석)

  • Jin Yong;Park Chan Gook;Woo Rho Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.52-58
    • /
    • 2002
  • The PIG(Pipeline Inspection Gauge) is inserted in the pipeline and stores data of pipeline. In order to investigate the status of pipeline, a lot of sensors such as caliper, pressure, IMU and odometer are used. In this paper, the navigation storage data system for PIG is developed. It has master/slave structure for a real time operation. The master system stores data, while the slave system acquire the data from sensors. The performance of the developed system is verified by pull rig test.

  • PDF

A Study on Web-based Mobile Mapping System Using Real-Time GPS/INS System (실시간 GPS/INS 시스템을 이용한 웹기반 모바일 매핑시스템 연구)

  • 이종기;김병국;권재현
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.291-299
    • /
    • 2003
  • The Mobile Mapping System collects geographic information through mounted sensors such as a pair of CCD camera, CPS, IMU(Inertial Measurement Unit) and Odometer at regular distance or time interval. The advantage of such system is to easy identification of positions and geographic informations of mobile objects in real time. Among many wireless communication ways for real-time positions and geographic information data from the mobile mapping system to the user such as PDA, wireless modem, cellophane, and web, the web is considered to be more stabile, effect and economic than any other methods. In this paper, a study on the web-based real-time mobile mapping platform to identify the user position is presented using the real-time NovAtel BDS.

  • PDF