• Title/Summary/Keyword: IMRT (intensity modulated radiation therapy)

Search Result 202, Processing Time 0.031 seconds

Robust Planning of Intensity-modulated Proton Therapy for Prostate Cancer (전립선암 치료를 위한 세기조절 양성자 로버스트 치료계획)

  • Park, Su Yeon;Kim, Jong Sik;Park, Ju Young;Park, Won;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • Purpose: The aim of this study is to evaluate the dosimetric properties of robust planning strategy for plain intensity-modulated proton therapy (IMPT) taking into account of the uncertainties of effective proton range and set up error as compared to photon intensity-modulated radiation therapy (photon-IMRT) in prostate cancer treatment. Materials and Methods: The photon-IMRT (7 beams, step & shoot), plain-IMPT (2, 4, and 7 portals), and robust- IMPT plans, which was recalculated the plain-IMPT based on the uncertainties of range error (${\pm}5%$) and set up error (0.5 cm), were evaluated for five prostate cancer patients prescribed by 70 Gy/35 fractions. To quantitatively evaluate the dose distributions, several parameters such as maximum dose, minimum dose, mean dose, conformity index (CI), and homogeneity index (HI) for PTV as well as dose-volume index of VxGy for OARs were calculated from dose-volume histograms. Results: Robust-IMPT showed superior dose distributios in the PTV and OARs as compared to plain-IMPT and photon-IMRT. Like plain-IMPT, robust-IMPT were resulted in dose fluctuation around OARs, while better homogeneity and conformity in PTVs and lower mean dose in OARs as compared to photon-IMRT. Conclusion: In consideration with the effective range correction and set up movement using robustness in IMPT plan, the dosimetric uncertainties from plain-IMPT could substantially reduce and suggest more effective solutions than photon-IMRT in prostate cancer treatment.

  • PDF

Dosimetric Verification for Primary Focal Hypermetabolism of Nasopharyngeal Carcinoma Patients Treated with Dynamic Intensity-modulated Radiation Therapy

  • Xin, Yong;Wang, Jia-Yang;Li, Liang;Tang, Tian-You;Liu, Gui-Hong;Wang, Jian-She;Xu, Yu-Mei;Chen, Yong;Zhang, Long-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.985-989
    • /
    • 2012
  • Objective: To make sure the feasibility with $^{18F}FDG$ PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Methods: Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and $^{18F}FDG$ PET/CT). The dose distributions of the various regional were realized by SMART. Results: The absolute mean errors of interest area were $2.39%{\pm}0.66$ using 0.6cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Conclusions: Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

Study of $\textrm{IMFAST}^{TM}$ Segmentation Algorithm with CORVUS TPS for Intensity Modulated Radiation Therapy (세기조절 방사선 치료에서 CORVUS TPS를 이용한 $\textrm{IMFAST}^{TM}$ Segmentation Algorithm의 연구)

  • Lee, Se-Byeong;Jino Bak;Cho, Kwang-Hwan;Chu, Sung-Sil;Lee, Chang-Geol;Lee, Suk;Hongryll Pyo;Suh, Chang-Ok
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.181-186
    • /
    • 2002
  • The IMRT planning depends on the algorithm of each planning system and MLC performance of each Linac system. Yonsei Cancer Center introduced an IMRT System at the beginning of February, 2002. The system consists of CORVUS (Nomos, U.S.A.) treatment planning system, LANTIS, PRIMEVIEW and PRIMART (Siemens, U.S.A) linac system. The optimization of CORVUS planning system with PRIMART is an important task to make a desirable quality treatment plan. Our Step & Shoot IMRT system uses Finite Size Pencil Beams (FSPB) dose model, simulated annealing optimization algorithm and IMFAST segmentation algorithm. We constructed treatment plans for four different patient cases with two basic beamlet sizes, 1.0$\times$1.0 $\textrm{cm}^2$ and 0.5$\times$1.0 $\textrm{cm}^2$, and four intensity steps, 5%, 10%, 20%, 33%. Each case's plan was evaluated with the dose volume histograms of target volumes and delivery efficiencies. The patient case of small target volume is sensitive at the change of intensity map's segmentation and it highlighted an effective treatment plan at marrow intensity step and small basic projection beamlet.

  • PDF

The Patient Specific QA of IMRT and VMAT Through the AAPM Task Group Report 119 (AAPM TG-119 보고서를 통한 세기조절방사선치료(IMRT)와 부피적세기조절회전치료(VMAT)의 치료 전 환자별 정도관리)

  • Kang, Dong-Jin;Jung, Jae-Yong;Kim, Jong-Ha;Park, Seung;Lee, Keun-Sub;Sohn, Seung-Chang;Shin, Young-Joo;Kim, Yon-Lae
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • The aim of this study was to evaluate the patient specific quality assurance (QA) results of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) through the AAPM Task Group Report 119. Using the treatment planning system, both IMRT and VMAT treatment plans were established. The absolute dose and relative dose for the target and OAR were measured by using an ion chamber and the bi-planar diode array, respectively. The plan evaluation was used by the Dose volume histogram (DVH) and the dose verification was implemented by compare the measured value with the calculated value. For the evaluation of plan, in case of prostate, both IMRT and VMAT were closed the goal of target and OARs. In case of H&N and Multi-target, IMRT was not reached the goal of target, but VMAT was reached the goal of target and OARs. In case of C-shape(easy), both were reached the goal of target and OARs. In case of C-shape(hard), both were reached the goal of target but not reached the goal of OARs. For the evaluation of absolute dose, in case of IMRT, the mean of relative error (%) between measured and calculated value was $1.24{\pm}2.06%$ and $1.4{\pm}2.9%$ for target and OAR, respectively. The confidence limits were 3.65% and 4.39% for target and OAR, respectively. In case of VMAT the mean of relative error was $2.06{\pm}0.64%$ and $2.21{\pm}0.74%$ for target and OAR, respectively. The confidence limits were 4.09% and 3.04% for target and OAR, respectively. For the evaluation of relative dose, in case of IMRT, the average percentage of passing gamma criteria (3mm/3%) were $98.3{\pm}1.5%$ and the confidence limits were 3.78%. In case of VMAT, the average percentage were $98.2{\pm}1.1%$ and the confidence limits were 3.95%. We performed IMRT and VMAT patient specific QA using TG-119 based procedure, all analyzed results were satisfied with acceptance criteria based on TG-119. So, the IMRT and VMAT of our institution was confirmed the accuracy.

Property of Dose Distribution in Accordance with Dose Rate Variation in Intensity Modulated Radiation Therapy (세기조절방사선치료에서 선량율 변화에 따른 선량분포 특성)

  • Kang, Min-Kyu;Kim, Sung-Joon;Shin, Hyun-Soo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.218-222
    • /
    • 2010
  • As radiation is irradiated from various directions in intensity modulated radiation therapy (IMRT), longer treatment time than conventional treatment method is taken. In case of the patients who have problem to keep same posture for long time because of pain and injury, reducing treatment time through increased dose rate is a way for effective treatment. This study measured and found out the variation of dose and dose distribution in accordance with dose rate variation. IMRT treatment plan was set up to investigate from 5 directions - $0^{\circ}$, $72^{\circ}$, $144^{\circ}$, $216^{\circ}$, $288^{\circ}$ - using ECLIPSE system (Varian, SomaVision 6.5, USA). To confirm dose and dose rate in accordance with dose rate variation, dose rate was set up as 100, 300, 500 MU/min, and dose and dose distribution were measured using ionization chamber (PTW, TN31014) and film dosimeter (EDR2, Kodak). At this time, film dosimeter was inserted into acrylic phantom, then installed to run parallel with beam's irradiating direction, 21EX-S (Varian, USA) was utilized as linear accelerator for irradiation. The measured film dosimeter was analyzed using VXR-16 (Vidar System Corporation) to confirm dose distribution.

The Effect of Volume Reduction on Computed Treatment Planning during Head and Neck IMRT and VMAT (두경부 IMRT 및 VMAT 시 체적 감소가 전산화치료계획에 미치는 영향)

  • Ki-Cheon Um;Gha-Jung Kim;Geum-Mun Back
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.239-246
    • /
    • 2023
  • In this study, we assessed the effect of reduction of tumor volume in the head and neck cancer by using RANDO phantom in Static Intensity-Modulated Radiation Therapy (S-IMRT) and Volumetric-Modulated Arc Therapy (VMAT) planning. RANDO phantom's body and protruding volumes were delineated by using Contour menu of Eclipse™ (Varian Medical System, Inc., Version 15.6, USA) treatment planning system. Inner margins of 2 mm to 10 mm from protruding volumes of the reference were applied to generate the parameters of reduced volume. In addition, target volume and Organ at Risk (OAR) volumes were delineated. S-IMRT plan and VMAT plan were designed in reference. These plans were assigned in the reduced volumes and dose was calculated in reduced volumes using preset Monitor unit (MU). Dose Volume Histogram (DVH) was generated to evaluate treatment planning. Conformity Index (CI) and R2 in reference S-IMRT were 0.983 and 0.015, respectively. There was no significant relationship between CI and the reduced volume. Homogeneity Index (HI) and R2 were 0.092 and 0.960, respectively. The HI increased when volume reduced. In reference VMAT, CI and R2 were 0.992 and 0.259, respectively. There was no relationship between the volume reduction and CI. On the other hand, HI and R2 were 0.078 and 0.895, respectively. The value of HI increased when the volume reduced. There was significant difference (p<0.05) between parameters (Dmean and Dmax) of normal organs of S-IMRT and VMAT except brain stem. Volume reduction affected the CI, HI and OAR dose. In the future, additional studies are necessary to incorporate the reduction of the volume in the clinical setting.

Effectiveness and feasibility of concurrent chemoradiotherapy using simultaneous integrated boost-intensity modulated radiotherapy with and without induction chemotherapy for locally advanced pancreatic cancer

  • Oh, Eun Sang;Kim, Tae Hyun;Woo, Sang Myung;Lee, Woo Jin;Lee, Ju Hee;Youn, Sang Hee;Han, Sung Sik;Park, Sang Jae;Kim, Dae Yong
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.200-209
    • /
    • 2018
  • Purpose: To evaluate the effectiveness and feasibility of chemoradiotherapy (CRT) using simultaneous integrated boost-intensity modulated radiotherapy (SIB-IMRT) in locally advanced pancreatic cancer (LAPC) patients. Materials and Methods: Between January 2011 and May 2015, 47 LAPC patients received CRT using SIB-IMRT. Prior to SIB-IMRT, 37 patients (78.7%) received induction chemotherapy (IC-CRT group) and remaining 10 patients (21.3%) did not received induction chemotherapy (CRT group). During SIB-IMRT, all patients received concomitant chemotherapy, with gemcitabine (n = 37) and capecitabine (n = 10). Results: At the time of analysis, 45 patients had died and 2 patients remained alive and the median follow-up time was 14.2 months (range, 3.3 to 51.4 months). For all patients, the median times of local progression-free survival (LPFS), progression-free survival (PFS), and overall survival (OS) were 18.1, 10.3, and 14.2 months, respectively. The median time of LPFS between IC-CRT and CRT groups was similar (18.1 months vs. 18.3 months, p = 0.711). IC-CRT group had a higher trend in PFS (10.9 months vs. 4.1 months, p = 0.054) and had significantly higher OS (15.4 months vs. 9.5 months, p = 0.007) than CRT group. In multivariate analysis, the use of induction chemotherapy and tumor response were significant factors associated with OS (p < 0.05, each). During SIB-IMRT, toxicity of grade ≥3 was observed in 7 patients (14.9%) in all patients. Conclusions: CRT using SIB-IMRT is feasible and promising in LAPC patients.

A Study on Superficial Dose of 6MV-FFF in HalcyonTM LINAC: Phantom Study (HalcyonTM 선형가속기 6MV-FFF 에너지의 표재 선량에 대한 고찰: Phantom Study)

  • Choi, Seong Hoon;Um, Ki Cheon;Yoo, Soon Mi;Park, Je Wan;Song, Heung Kwon;Yoon, In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.31-39
    • /
    • 2020
  • Purpose: The aims of this study were to compare the superficial dose with Optically Stimulated Luminescence Dosimeter(OSLD) measurement and Treatment Planning System(TPS) calculation for 6MV-Flattening Filter Free(FFF) energy using HalcyonTM and TrueBeamTM. Materials and methods: Phantom study was performed using the CT images of human phantom. In the treatment planning system, the Planning Target Volume(PTV) was contoured which is similar to Glottic cancer. Furthermore, Point(M), Point(R), and Point(L) were contoured at the iso-center of head and neck region and 5mm bolus was applied to the body contour. Each treatment plans using 6MV-FFF energy from HalcyonTM and TrueBeamTM with static Intensity Modulated Radiation Therapy(IMRT) and Volumetric Modulated Arc Therapy(VMAT) were established with eclipse. To reproduce the same position as the TPS, OSLDs were placed at the iso-center point and 5mm bolus was applied to compare the error rate after the dose delivery. Result: The results of the study using human phantom are as follows. In case of HalcyonTM, the mean absolute error rates of the point dose using the treatment planning system and the dose measured by OSLD were 1.7%±1.2% for VMAT and 4.0±2.8% for IMRT. Also TrueBeamTM was identified as 2.4±0.4% and 8.6±1.8% respectively for VMAT and IMRT. Conclusion: Through the results of this study, TrueBeamTM confirmed that the average error rate was 2.4 times higher for VMAT and 3.6 times higher for IMRT than HalcyonTM. Therefore, based on the results of this study, If we need a more accurate dose assessment for the superficial dose, It is expected that using HalcyonTM would be better than TrueBeamTM.

A Comparison between Portal Dosimetry and Mobius3D Results for Patient-Specific Quality Assurance in Radiotherapy

  • Kim, Sung Yeop;Park, Jaehyeon;Park, Jae Won;Yea, Ji Woon;Oh, Se An
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: The purpose of this study was to compare the clinical quality assurance results of portal dosimetry using an electronic portal imaging device, a method that is extensively used for patient-specific quality assurance, and the newly released Mobius3D for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods: This retrospective study includes data from 122 patients who underwent IMRT and VMAT on the Novalis Tx and VitalBeam linear accelerators between April and June 2020. We used a paired t-test to compare portal dosimetry using an electronic portal imaging device and the average gamma passing rates of MobiusFX using log files regenerated after patient treatment. Results: The average gamma passing rates of portal dosimetry (3%/3 mm) and MobiusFX (5%/3 mm) were 99.43%±1.02% and 99.32%±1.87% in VitalBeam and 97.53%±3.34% and 96.45%±13.94% in Novalis Tx, respectively. Comparison of the gamma passing rate results of portal dosimetry (3%/3 mm) and MobiusFX (5%/3 mm as per the manufacturer's manual) does not show any statistically significant difference. Conclusions: Log file-based patient-specific quality assurance, including independent dose calculation, can be appropriately used in clinical practice as a second-check dosimetry, and it is considered comparable with primary quality assurance such as portal dosimetry.

MU Fluence Reconstruction based-on Delivered Leaf Position: for IMRT Quality Assurance (세기조절방사선치료의 정도관리를 위한 모니터유닛 공간분포 재구성의 효용성 평가)

  • Park, So-Yeon;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Ye, Sung-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • The measurement-based verification for intensity modulated radiation therapy (IMRT) is a time-and labor-consuming procedure. Instead, this study aims to develop a MU fluence reconstruction method for IMRT QA. Total actual fluences from treatment planning system (TPS, Eclipse 8.6, Varian) were selected as a reference. Delivered leaf positions according to MU were extracted by the dynalog file generated after IMRT delivery. An in-house software was develop to reconstruct MU fluence from the acquired delivered leaf position data using MATLAB. We investigated five patient's plans delivered by both step-and-shoot IMRT and sliding window technologies. The total actual fluence was compared with the MU fluence reconstructed by using commercial software (Verisoft 3.1, PTW) and gamma analysis method (criteria: 3%/3 mm and 2%/1 mm). Gamma pass rates were $97.8{\pm}1.33$% and the reconstructed fluence was shown good agreement with RTP-based actual fluence. The fluence from step and shoot IMRT was shown slightly higher agreement with the actual fluence than that from sliding window IMRT. If moving from IMRT QA measurements toward independent computer calculations, the developed method can be used for IMRT QA. A point dose calculation method from reconstructed fluences is under development for the routine IMRT QA purpose.