• Title/Summary/Keyword: IMPS (Intensity Modulated Photocurrent Spectroscopy)

Search Result 7, Processing Time 0.024 seconds

Dynamic Response of Charge Transfer and Recombination at Various Electrodes in Dye-sensitized Solar Cells Investigated Using Intensity Modulated Photocurrent and Photovoltage Spectroscopy

  • Kim, Gyeong-Ok;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.469-472
    • /
    • 2012
  • Intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy were investigated to measure the dynamic response of charge transfer and recombination in the standard, $TiCl_4$-treated and the combined scattering layer electrode dye-sensitized solar cells (DSSCs). IMPS and IMVS provided transit time ($\tau_n$), lifetime ($\tau_r$), diffusion coefficient ($D_n$) and effective diffusion length ($L_n$). These expressions are derived that generation, collection, and recombination of electrons in a thin layer nanocrystalline DSSC under conditions of steady illumination and with a superimposed small amplitude modulation. In this experimental, IMPS/IMVS showed that the main effect of $TiCl_4$ treatment is to suppress the recombination of photogenerated electrons, thereby extending their lifetime. And the Diffusion coefficient of combined scattering layer electrode is $6.10{\times}10^{-6}$ higher than that of the others, resulting in longer diffusion length.

Effect of Morphology on Electron Transport in Dye-Sensitized Nanostructured $TiO_2$ Films

  • Park, Nam-Gyu;Jao van de Lagemaat;Arthur J. Frank
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.199-202
    • /
    • 2003
  • The relationship between the morphology of nanostructured TiO$_2$ films and the photo-injected electron transport has been investigated using intensity-modulated photocurrent spectroscopy (IMPS). For this purpose, three different TiO$_2$ films with 5 ${\mu}{\textrm}{m}$ thickness are prepared: The rutile TiO$_2$ film with 500 nm-sized cluster-like spherical bundles composed of the individual needles (Tl), the rutile TiO$_2$ film made up of non-oriented, homogeneously distributed rod-shaped particles having a dimension of approximately 20${\times}$80 nm (T2), and the anatase TiO$_2$ film with 20 nm-sized spherically shaped particles (T3). Cross sectional scanning electron micrographs show that all of the TiO$_2$films have a quite different particle packing density: poorly packed Tl film, loosely packed T2 film and densely packed T3 film. The electron transport is found to be significantly influenced by film morphology. The effective electron diffusion coefficient D$_{eff}$ derived from the IMPS time constant is an order of magnitude lower for T2 than for T3, but the D$_{eff}$ for the Tl sample is much lower than T2. These differences in the rate of electron transport are ascribed to differences in the extent of interparticle connectivity associated with the particle packing density.ity.

  • PDF

Electrochemical Characterization of Fluorine Doped TiO2 Dye-Sensitized Solar Cells (불소 도핑 TiO2 염료감응형 태양전지의 전기화학적 특성)

  • Lee, Sung Kyu;Im, Ji Sun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.461-466
    • /
    • 2011
  • In this study, the fluorine doped $TiO_2$ was prepared as a photoelectrode in order to improve the efficiency of dye-sensitized solar cells and estimated the electrochemical characterizations. The energy conversion efficiency of the prepared dye-sensitized solar cells using fluorine doped $TiO_2$ was calculated from a current-voltage curve. The efficiency of prepared dye-sensitized solar cells was improved by about maximum three times by F-doping on $TiO_2$. It was suggested that the efficiency of dye-sensitized solar cells was improved by hybrid semiconductors of $TiO_2/TiOF_2$ in photoelectrode based on reduced $TiOF_2$ energy level via fluorine doping. It can be confirmed that the electron transport was faster but the electron recombination was slower by doping fluorine on $TiO_2$ in photoelectrode through intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy analysis.

Properties of Charge Collection in ITO Nanowire-based Quantum Dot Sensitized Solar Cell

  • An, Yun-Jin;Kim, Byeong-Jo;Jeong, Hyeon-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.196-196
    • /
    • 2012
  • 염료감응 태양전지는 실리콘 태양전지에 비해 단가가 낮고 반투명하며 친환경적 특성으로 차세대 태양전지로 주목을 받았으나 염료의 안정성의 문제와 특정 파장대의 빛만 흡수하는 단점을 가지고 있다. 이러한 문제점을 해결하기 위하여 양자구속 효과에 의해 크기에 따라 밴드갭 조절이 용이하여 다양한 파장대의 빛을 흡수 할 수 있는 양자점 감응태양전지가 많은 관심을 받고 있다. 하지만 양자점 감응 태양 전지의 활성층으로 사용되는 반도체 산화물인 이산화티타늄의 두께는 $13{\sim}18{\mu}m$로 짧은 확산거리로 인해 전하수집의 한계를 가지고 있다. 이를 극복하기 위해 인듐 주석 산화물 나노선을 합성하여 전자가 광전극에 직접유입이 가능하도록 해 빠른 전하이동 및 전하수집을 가능하게 한다. 인듐 주석 산화물 나노선은 증기수송 방법(VTM)을 이용하여 인듐 주석 산화물 유리 기판 위에 $5{\sim}30{\mu}m$ 길이로 합성하였다. 전해질과 전자가 손실되는 것을 방지하기 위해 원자층 증착법(ALD)을 이용하여 이산화 티타늄 차단층을 20 nm 두께로 코팅한 후 화학증착방법(CBD)을 이용하여 인듐 주석 산화물 나노선-이산화 티타늄 코어-쉘 구조를 만든다. 마지막으로 황화카드뮴, 카드늄셀레나이드, 황화아연을 증착시킨 후 다황화물 전해질을 이용하여 양자점 감응 태양전지를 제작하였다. 특성 평가를 위해 전계방사 주사전자현미경, X-선 회절, 고분해능 투과 전자 현미경을 이용하며 intensity modulated photocurrent spectroscopy (IMPS), intensity modulated voltage spectroscopy (IMVS)를 이용하여 전하수집 특성평가를 하였다.

  • PDF

Facile Fabrication of Aligned Doubly Open-ended TiO2 Nanotubes, via a Novel Selective Etching Process, and Thier Application in Dye Sensitized Solar Cells

  • Choe, Jong-Min;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.483.2-483.2
    • /
    • 2014
  • In this study, we describe a simple selective etching method that produces noncurling, freestanding, large-area, aligned $TiO_2$ nanotube (NT) with doubly ends opened. The novel selective etching process only removed the thin 2nd bottom layer from the physically and chemically stable thick amorphous 1st top layer under thermal treatment at $250^{\circ}C$, yielding ordered doubly open-ended NT (DNT) that could be easily transferred to an FTO substrate for the fabrication of front-illuminated dye sensitized solar cells (DSCs). The DNT-DSCs yielded a higher PCE (8.6%) than was observed from $TiO_2$ nanoparticle (TNP)-based DSCs (7.3%), for comparable film thicknesses of $16{\mu}m$, despite of 20% decreased amount of dye. Intensity-modulated photocurrent and photovoltage spectroscopy (IMPS and IMVS, respectively) revealed that the DNT-DSCs exhibited electron lifetimes that were 10 times longer than those of TNP-DSCs, which contributed to high device performances.

  • PDF

Study of the Characteristics of Low-Temperature Prepared TiO2 Paste for Dye-sensitized Solar Cells (저온소성 TiO2 페이스트를 이용한 염료감응 태양전지의 특성 연구)

  • Jung, You-Ra;Jin, En Mei;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.380-384
    • /
    • 2013
  • In this paper, we have developed a low temperature process to make two type of paste by using $TiO_2$ nanoparticles(P25). The interconnections between substrate and $TiO_2$ films or link between particles of free-binder paste(FP1, FP2, FP3) is very poor. Therefore, the Titanium(IV) isopropoxide was added to the TP paste to improve the interconnection. Electron transport time (${\tau}_t$) and recombination time (${\tau}_r$) are analyzed by IMPS (intensity-modulated photocurrent spectroscopy) and IMVS(Intensity-modulated photovoltage spectroscopy). In the results, ${\tau}_t$ of TP paste based DSSCs (about $4.3{\times}10^{-3}$) is faster than other samples. ${\tau}_r$ is longer from $2.7{\times}10^{-2}$ s of FP2 to $3.0{\times}10^{-2}$ s of TP. A solar conversion efficiency (DSSCs) of TP is 3.54% for an incident solar energy of 100 mW $cm^{-2}$(meanwhile, 2.70% for DSSCs with FP2). The conversion efficiency is increased by 1.3 times.

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF