• 제목/요약/키워드: IMO A.868(20)

검색결과 2건 처리시간 0.015초

벌크 화물선용 자동 밸러스트수 교환계획 시스템 개발 (Optimized Ballast Water Exchange Management for Bulk Carriers)

  • 홍충유;박제웅
    • 한국해양공학회지
    • /
    • 제18권4호
    • /
    • pp.65-70
    • /
    • 2004
  • Many port states, such as New Zealand, U.S.A., Australia, and Canada, have strict regulations to prevent arriving ships from discharging polluted ballast water that contains harmful aquatic organisms and pathogens. They are notified that transfer of polluted ballast water can cause serious injury to public health and damage to property and environment. For this reason, ballast exchange in deep sea is perceived as the most effective method of emptying ballast water. The ballast management plan contains the effective exchange method, ballast system, and safety considerations. In this study, we pursued both nautical engineering analysis and optimization of the algorithm, in order to generate the sequence of stability and rapidity. A heuristic algorithm was chosen on the basis of optimality and applicability to a sequential exchange problem. We have built an optimized algorithm for the automatic exchange of ballast water, by redefining core elements of the A$\ast$ algorithm, such as node, operator, and evaluation function. The final version of the optimized algorithm has been applied to existing bulk carrier, and the performance of the algorithm has been successfully verified.

BULK 선용자동 Ballast Water Management Plan 개발 (Optimized Ballast Water Exchange Management for Bulk Carrier)

  • 홍충유;박제웅
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.67-72
    • /
    • 2004
  • Many port states such as New Zealand, the USA, Australia and Canada have strict regulations to prevent ships which arrive in their port from discharging polluted ballast water which contain harmful aquatic organism and pathogens. They are notified that transfer of polluted ballast water can cause serious injury to public health and damage to property and environment. For this reason, they perceived that the ballast exchange in deep sea is the most effective method, together with submitting the ballast management plan which contains the effective exchange method, ballast system and safety consideration. In this study, we pursued both nautical engineering analysis and optimization of algorithm in order to generate the sequence of stability and rapidity. Heuristic Algorithm was chosen on the basis of optimality and applicability to a sequential exchange problem. We have built an optimized algorithm, for automatic exchange of ballast water, by redefining core elements of the $A^\ast$ algorithm, such as node, operator and evaluation function. Final version of the optimized algorithm has been applied to existing bulk carrier and the performance of the algorithm has been verified successfully.

  • PDF