• Title/Summary/Keyword: IMA (1,1) Model

Search Result 18, Processing Time 0.025 seconds

Design of On-line Process Control with Variable Measurement Interval

  • Park, Changsoon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.319-336
    • /
    • 2000
  • A mixed model with a white noise process and an IMA(0,1,1) process is considered as a process model. It is assumed that the process is a white noise in the absence of a special cause and the process changes to an IMA(0,1,1) due to a special cause. One useful scheme in measuring the process level is to use the variable measurement interval (VMI) between measurement times according to the value of the previous chart statistic. The advantage of the VMI scheme is to measure the process level infrequently when in control to save the measurement cost and to measure frequently when out of control to save the off-target cost. This paper considers the VMI scheme in order to detect changes in the process model from a white noise to an IMA(0,1,1). The VMI scheme is shown to be effective compared to the standard fixed measurement interval (FMI) scheme in both statistical and economic contexts.

  • PDF

AN INTEGRATED PROCESS CONTROL PROCEDURE WITH REPEATED ADJUSTMENTS AND EWMA MONITORING UNDER AN IMA(1,1) DISTURBANCE WITH A STEP SHIFT

  • Park, Chang-Soon
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.381-399
    • /
    • 2004
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for process quality improvement. SPC re-duces process variability by detecting and eliminating special causes of process variation, while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been need for an integrated process control (IPC) procedure which combines the two strategies. This paper considers a scheme that simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an IMA(1,1) model with a step shift. The EPC part of the scheme adjusts the process, while the SPC part of the scheme detects the occurrence of a special cause. For adjusting the process repeated adjustment is applied according to the predicted deviation from target. For detecting special causes the exponentially weighted moving average control chart is applied to the observed deviations. It was assumed that the adjustment under the presence of a special cause may increase the process variability or change the system gain. Reasonable choices of parameters for the IPC procedure are considered in the context of the mean squared deviation as well as the average run length.

Change point estimators in monitoring the parameters of an IMA(1,1) model (누적이동평균(1,1) 모형에서 공정 변화시점의 추정)

  • Lee, Ho-Yun;Lee, Jae-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.435-443
    • /
    • 2009
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose the maximum likelihood estimator (MLE) for the process change point when a control chart is used in monitoring the parameters of a process in which the observations can be modeled as a IMA(1,1).

  • PDF

A change point estimator in monitoring the parameters of a multivariate IMA(1, 1) model

  • Sohn, Sun-Yoel;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.525-533
    • /
    • 2015
  • Modern production process is a very complex structure combined observations which are correlated with several factors. When the error signal occurs in the process, it is very difficult to know the root causes of an out-of-control signal because of insufficient information. However, if we know the time of the change, the system can be controlled more easily. To know it, we derive a maximum likelihood estimator (MLE) of the change point in a process when observations are from a multivariate IMA(1,1) process by monitoring residual vectors of the model. In this paper, numerical results show that the MLE of change point is effective in detecting changes in a process.

Economic Performance of an EWMA Chart for Monitoring MMSE-Controlled Processes

  • Lee, Jae-Heon;Yang, Wan-Youn
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.285-295
    • /
    • 2004
  • Statistical process control(SPC) and engineering process control(EPC) are two complementary strategies for quality improvement. An integrated process control(IPC) can use EPC to reduce the effect of predictable quality variations and SPC to monitor the process for detection of special causes. In this paper we assume an IMA(1,1) model as a disturbance process and an occurrence of a level shift in the process, and we consider the economic performance for applying an EWMA chart to monitor MMSE-controlled processes. The numerical results suggest that the IPC scheme in an IMA(1,1) disturbance model does not give additional advantages in the economic aspect.

  • PDF

DEVELOPMENT OF INTELLIGENT POWER UNIT FOR HYBRID FOUR-DOOR SEDAN

  • Aitaka, K.;Hosoda, M.;Nomura, T.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • The Intelligent Power Unit (IPU) utilized in Honda's Civic Hybrid Integrated Motor Assist (IMA) system was developed with the aim of making every component lighter, more compact and more efficient than those in the former model. To reduce energy loss, inverter efficiency was increased by fine patterning of the Insulated Gate Bipolar Transistor (IGBT) chips, 12V DC-DC converter efficiency was increased by utilizing soft-switching, and the internal resistance of the IMA battery was lowered by modifying the electrodes and the current collecting structure. These improvements reduced the amount of heat generated by the unit components and made it possible to combine the previously separated Power Control Unit (PCU) and battery cooling systems into a single system. Consolidation of these two cooling circuits into one has reduced the volume of the newly developed IPU by 42% compared to the former model.

A Comparison of the Contact Area between Three Different Correcting Angles after Proximal Crescentic Osteotomy and Ludloff Osteotomy of the First Metatarsal (Preliminary Report) (제1 중족골 근위 반월형 절골술과 Ludloff 절골술 후 교정 각도에 따른 절골편간 접촉 면적 비교(예비보고))

  • Park, Yong-Wook;Jang, Keun-Jong;Park, Sang-Ho
    • Journal of Korean Foot and Ankle Society
    • /
    • v.14 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • Purpose: This study was performed to compare the contact area between three different correcting angles after the proximal crescentic and Ludloff osteotomies of the first metatarsal. Materials and Methods: We used the two sawbone models. Proximal crescentic (PCO) and Ludloff osteotomies (LO) were performed and secured using K-wires under the correcting intermetatarsal angle (IMA) $5^{\circ}$, $10^{\circ}$, and $15^{\circ}$. Then each 6 osteotomized model was scanned five times and measured the contact area using the calculating program. We excluded the highest and lowest values. Results: The mean area of cutting surface was 189 $mm^2$ in PCO, 863 $mm^2$ in LO. The mean contact area (contact ratio; contact area $\times$100/area of cutting surface) of PCO was 149 $mm^2$ (79%) in $5^{\circ}$, 139.5 $mm^2$ (74%) in $10^{\circ}$, 107 $mm^2$ (57%) in $15^{\circ}$ IMA. The mean contact area (contact ratio) of LO was 711 $mm^2$ (82%) in $5^{\circ}$, 535.5 $mm^2$ (62%) in $10^{\circ}$, 330 $mm^2$ (38%) in $15^{\circ}$ IMA. Conclusion: A significant decrease in the contact area and contact ratio according to increase in correcting IMA was noticed in LO. We recommend the PCO rather than LO, when the IMA is needed to correct over $15^{\circ}$.

A Combined Process Control Procedure by Monitoring and Repeated Adjustment

  • Park, Changsoon
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.773-788
    • /
    • 2000
  • Statistical process control (SPC) and engineering process control (EPC) are based on different strategies for processes quality improvement. SPC reduces process variability by detecting and eliminating special causes of process variation. while EPC reduces process variability by adjusting compensatory variables to keep the quality variable close to target. Recently there has been needs for a process control proceduce which combines the tow strategies. This paper considers a combined scheme which simultaneously applies SPC and EPC techniques to reduce the variation of a process. The process model under consideration is an integrated moving average(IMA) process with a step shift. The EPC part of the scheme adjusts the process back to target at every fixed monitoring intervals, which is referred to a repeated adjustment scheme. The SPC part of the scheme uses an exponentially weighted moving average(EWMA) of observed deviation from target to detect special causes. A Markov chain model is developed to relate the scheme's expected cost per unit time to the design parameters of he combined control scheme. The expected cost per unit time is composed of off-target cost, adjustment cost, monitoring cost, and false alarm cost.

  • PDF

Development of Integrated Variable Sampling Interval EngineeringProcess Control & Statistical Process Control System (가변 샘플링간격 EPC/SPC 결합시스템의 개발)

  • Lee, Sung-Jae;Seo, Sun-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.210-218
    • /
    • 2006
  • Traditional statistical process control (SPC) applied to discrete part industry in the form of control charts can look for and eliminate assignable causes by process monitoring. On the other hand, engineering process control (EPC) applied to the process industry in the form of feedback control can maintain the process output on the target by continual adjustment of input variable. This study presents controlling and monitoring rules adopted by variable sampling interval (VSI) to change sampling intervals in a predetermined fashion on the predicted process levels under integrated EPC and SPC systems. Twelve rules classified by EPC schemes(MMSE, constrained PI, bounded or deadband adjustment policy) and type of sampling interval combined with EWMA chart of SPC are proposed under IMA (1,1) disturbance model and zero-order (responsive) dynamic system. Properties of twelve control rules under three patterns of process change (sudden shift, drift and random shift) are evaluated and discussed through simulation and control rules for integrated VSI EPC and SPC systems are recommended.

A Time Series-based Algorithm for Eliminating Outliers of GPS Probe Data (시계열기반의 GPS 프로브 자료의 이상치 제거 알고리즘 개발)

  • Choi, Kee-Choo;Jang, Jeong-A
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.67-77
    • /
    • 2004
  • A treatment of outlier has been discussed. Outliers disrupt the reliability of information systems and they should be eliminated prior to the information and/or data fusion. A time series-based elimination algorithm were proposed and prediction interval, as a criterion of acceptable value width, was obtained with the model. Ten actual link values were used and the best model was identified as IMA(1,1). Although the actual verification was difficult in a sense that the matching process between the eliminated data and model data was not readily available, the proposed model can be successfully used in practice with some calibration efforts.