• Title/Summary/Keyword: IM-NAA

Search Result 5, Processing Time 0.019 seconds

Analysis of Zirconium and Nickel Based Alloys and Zirconium Oxides by Relative and Internal Monostandard Neutron Activation Analysis Methods

  • Shinde, Amol D.;Acharya, Raghunath;Reddy, Annareddy V.R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.562-568
    • /
    • 2017
  • Background: The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Methods: Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. Results: In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. Conclusion: The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

유용 2차 대사산물의 생산을 위한 약용식물의 증진과 형질전환 I. 기내배양을 통한 병풀 엽병의 식물체 재분화

  • Kim, Kwang-Su;Paek, Yun-Woong;Ko, Kyung-Min;Hwang, Sung-Jin;Im, Hyung-Tag;Hwang, Baik
    • Journal of Plant Biology
    • /
    • v.38 no.2
    • /
    • pp.211-215
    • /
    • 1995
  • 병풀(Centella asiatica)의 엽병 조직절편에서 유도된 배발생 캘러스로부터 체세포배 발생에 의하여 소식물체의 재분화를 이루었다. 엽병 조직절편을 1mg/L 2,4-D와 1mg/L kinetin이 조합 처리된 MS 기본배지에 치상하여 85%의 효율로 배발생 캘러스를 유도할 수 있었으며 이와 같은 배발생 캘러스를 5mg/L NAA와 1mg/L kinetin이 첨가된 배지로 옮겼을 때 체세포배의 형성은 87%까지 이루어졌다. 체세포배는 기본배지의 농도를 절반으로 줄이고 0.2 mg/L NAA와 0.2 mg/L kinetin이 첨가된 배지조건에서 기관분화를 거쳐 소식물체로 재분화되었다.

  • PDF

Evaluations of Spectral Analysis of in vitro 2D-COSY and 2D-NOESY on Human Brain Metabolites (인체 뇌 대사물질에서의 In vitro 2D-COSY와 2D-NOESY 스펙트럼 분석 평가)

  • Choe, Bo-Young;Woo, Dong-Cheol;Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Im;Kim, Eun-Hee;Hong, Kwan-Soo;Jeon, Young-Ho;Cheong, Chae-Joon;Kim, Sang-Soo;Lim, Hyang-Sook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.8-19
    • /
    • 2008
  • Purpose : To investigate the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar nuclear Overhauser effect/enhancement (NOE) interaction through 2D- correlation spectroscopy (COSY) and 2D- NOE spectroscopy (NOESY) techniques. Materials and Methods : All 2D experiments were performed on Bruker Avance 500 (11.8 T) with the zshield gradient triple resonance cryoprobe at 298 K. Human brain metabolites were prepared with 10% $D_2O$. Two-dimensional spectra with 2048 data points contains 320 free induction decay (FID) averaging. Repetition delay was 2 sec. The Top Spin 2.0 software was used for post-processing. Total 7 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), lutamine (Gln), glutamate (Glu), myo-inositol (Ins), and lactate (Lac) were included for major target metabolites. Results : Symmetrical 2D-COSY and 2D-NOESY pectra were successfully acquired: COSY cross peaks were observed in the only 1.0-4.5 ppm, however, NOESY cross peaks were observed in the 1.0-4.5 ppm and 7.9 ppm. From the result of the 2-D COSY data, cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methylene protons (CH2(3,$H{\alpha}$)) at 2.50ppm and methylene protons ($CH_2$,(3,$H_B$)) at 2.70 ppm were observed in NAA. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. From the result of 2-D NOESY data, cross peaks between the NH proton at 8.00 ppm and methyl protons ($CH_3$) were observed in NAA. Cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methyl protons (CH3) at 3.03 ppm and methylene protons (CH2) at 3.93 ppm were observed in Cr. Cross peaks between the methylene protons ($CH_2$(3)) at 2.11 ppm and methylene protons ($CH_2$(4)) at 2.35 ppm, and between the methylene protons($CH_2$ (3)) at 2.11 ppm and methine proton (CH(2)) at 3.76 ppm were observed in Glu. Cross peaks between the methylene protons (CH2 (3)) at 2.14 ppm and methine proton (CH(2)) at 3.79 ppm were observed in Gln. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. Conclusion : The present study demonstrated that in vitro 2D-COSY and NOESY represented the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar NOE interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2DCOSY study.

  • PDF

Difference in Rooting in the Scion from Different Node of Ligusticum chuanxiong Hort (토천궁(土川芎)의 삽수(揷穗) 채가(採歌) 부위(部位)에 따른 발근차이(發根差異))

  • Kim, Chung-Guk;Im, Dae-Joon;Lee, Seoung-Tack
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.3
    • /
    • pp.246-250
    • /
    • 1995
  • Scions from the one- and two-years old and the nodes of Ligusticum chuanxiong stem were used to study the rooting ability with the treatment of plant growth regulators planted to different bed soils as the alternative propagation for the present method by rhizome. The rooting ratio in the scion from the one- and the two-years old plants showed any difference, but that was ranged from 94% to 100% in the first node and from 56% to 64% in the second node from the bottom of the stem. The scion of first node from both the plants showed more than 90% in the root ratio and 16 in the number of rooting and growed more than 31cm in the root length. The Rootone-F and 250ppm of NAA were most effective for the promotion of rooting. Rooting ratios in the sand and in the mixture of vermiculite and perlite as bed soils were about 18%, but that in the cultured soil considerably decreased.

  • PDF

Study on Distribution of Elemental Concentration with a Different Depth of River Sediment using Neutron Activation Analysis (중성자 방사화 분석을 이용한 하천 침전물의 깊이에 따른 원소의 함량분포 연구)

  • Kim, Hyeon-Soo;Im, Hye-Ran;Kim, Yong-Uhn;Moon, Jong-Hwa
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.232-239
    • /
    • 2003
  • The river sediments were collected from 4 points of Seoknam river, one point of Miho river and one point of the joining area of two rivers. For preparation of sample, three sediment samples were collected for the surface, middle and lower part of the sediment at each sampling point. The elemental concentrations were analyzed by neutron activation analysis using HANARO research reactor at Korea Atomic Energy Research Institute, and the concentrations of 30 elements were determined by the relative method using standard reference material of NIST. As a result of analysis, it was found that when the examination and prediction of contamination distribution about the site where the contamination site of river is connected to the lower river is done, the specific gravity of elements which is contained in the sediment and the speed of a current of river should be considered and also found that when the samples for concentration analysis in the river sediments are collected, for the establishment of regional representatives in samples, the range of sampling depth should be determined considering the specific gravity of elements and the speed of a current.