• 제목/요약/키워드: IM

검색결과 21,864건 처리시간 0.045초

역학적 규모축소 기온을 이용한 남한지역 벼 수확일 1개월 예측 (1-month Prediction on Rice Harvest Date in South Korea Based on Dynamically Downscaled Temperature)

  • 허지나;임은순;하수빈;김용석;김응섭;이준리;조세라;심교문;강민구
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.267-275
    • /
    • 2023
  • 본 연구에서는 농촌진흥청에서 홍콩과학기술대학교와 국제공동연구를 통해 개발중인 1개월 농업기상 예측 시스템을 이용하여 2012-2022년 기간 동안 1개월 과거기후 예측 정보를 생산하고, 유효적산온도 기법을 적용하여 벼 수확일 전망 가능성을 살펴보았다. 상세한 기후정보를 얻기 위해, 지역기후모델(WRF)을 이용하여 전지구 기후예측 정보(CFSv2)를 남한지역에 대해 5 km 해상도로 규모축소하였다. 벼 수확일은 역학적 규모축소된 최고기온과 최저기온 과거예측 자료를 유효적산온도에 적용하여 추정하였다. 모형의 최고기온(최저기온)는 벼 생육기간(5월~10월)에 대해 관측과 비교하여 약 1.2 ℃ (0.1 ℃) 정도 과소모의하였다. 벼 수확일 추정 자료는 정성적으로 관측의 전반적인 공간 패턴을 모의하면서 지형효과에 의한 상세한 지역적 편차를 모의하였다. 그러나 음의 기온 오차가 유효적산온도에 투영되어, 예측자료에서 추정한 벼 수확일이 관측에서 추정한 벼 수확일과 비교하여 정량적으로 약 9일 늦게 모의하였다. 본 연구를 통해 1개월 기상예측 정보와 유효적산온도를 이용하여 남한 전역에 대해 공간적으로 연속적인 상세한(5 km) 벼 수확일 정보를 사전에 얻을 수 있는 가능성을 보았다. 예측정보의 신뢰성을 확보하고, 유효적산온도 뿐만 아니라 농업모형과 연계한다면 다양한 작목에 대한 농업정보들을 사전에 생산할 수 있을 것으로 생각된다.

자살시도력과 말초혈액의 염증 지표 간의 연관성 (Relationships of Peripheral Inflammatory Marker With Suicide Attempt History)

  • 오수현;김승준;신상호;오홍석;이재창;임우영;이나현
    • 정신신체의학
    • /
    • 제31권2호
    • /
    • pp.165-172
    • /
    • 2023
  • 연구목적 본 연구는 정신과 질환을 앓는 환자에서 자살시도 과거력 여부와 자살시도 횟수에 따라 중성구 대 림프구 비율, 혈소판 대 림프구 비율이 유의한 차이가 있는지를 확인하여 해당 수치가 자살시도 위험성을 예측하는 데에 활용할 수 있는 지표인지를 확인하고자 하였다. 방법 건양대학교병원 정신건강의학과에서 2021년 3월 1일부터 2023년 2월 28일 이내에 입원 치료를 받았던 환자들을 대상으로 의무기록 검토를 하여 인구학적 특성으로 성별, 내원 시 나이, 학력, 결혼 여부, 직업 여부를 조사하였으며 임상적 특성으로 혈액검사 결과, 정신과적 진단명, 이전 자살시도 과거력, 자살 시도로 인한 손상 정도, 자살시도 방법을 조사하였다. 자살시도 과거력의 유무에 따른 인구 사회학적 차이를 확인하고자 연속형 변수의 경우 T 검정, 범주형 변수의 경우 카이제곱 검정을 시행하였으며 여기서 유의미한 결과가 나온 성별과 나이를 공변량으로 하여 두 군 간의 말초혈액의 염증 지표의 평균값을 비교하고자 일원 배치 공분산 분석을 시행하였다. 또한, 자살시도 횟수에 따른 말초혈액의 염증 지표의 유의미한 차이가 있는지를 확인하고자 일원 배치 분산분석을 시행하였다. 결과 본 연구의 최종 분석 대상은 266명으로 자살시도 과거력이 있는 환자는 101명, 자살시도 과거력이 없었던 환자는 165명이었다. 자살시도 과거력이 있는 정신과 환자가 자살시도 과거력이 없는 정신과 환자보다 성별과 나이를 통제하고 나서도 중성구 대 림프구 비율(p<0.001), 혈소판 대 림프구 비율(p<0.001)가 상승하여 있었으나 자살시도의 횟수에 따라서는 중성구 대 림프구 비율, 혈소판 대 림프구 비율은 통계적으로 유의미한 순차적인 상승이 확인되지 않았다. 결론 본 연구는 중성구 대 림프구 비율과 혈소판 대 림프구 비율이 정신과 환자에게서의 자살시도 위험성을 예측할 수 있는 의미 있고 쉽게 접근 가능한 지표임을 제안하며 향후 이러한 사실을 검증하기 위한 보다 많은 대상자를 선정하고 잠재적 교란변수를 통제한 전향적인 후속 연구가 필요할 것으로 생각된다.

밀키트(가정간편식) 중 농산물의 잔류농약 안전성 조사 (A Safety Survey for Residual Pesticides in Agricultural Products in Meal-kits)

  • 송성민;선유정;서현정;한현호;이가혜;김정임;김명희;허명제;권문주
    • 한국식품위생안전성학회지
    • /
    • 제38권6호
    • /
    • pp.457-463
    • /
    • 2023
  • 밀키트 중 농산물의 잔류농약 안전성 조사를 위해 인천광역시 내 대형마트, 밀키트 전문점 및 온라인 스토어에서 밀키트 27개 제품을 수거하여 원재료 중 채소류 76품목, 버섯류 37품목을 대상으로 잔류농약 339 항목에 대해 분석하였다. 채소류 76품목 중 23품목에서 잔류농약이 검출되었으며, 버섯류 37품목은 검출되지 않았다. 잔류농약 검출률은 20.4%(23건/113건)를 보였으며 평균적으로 인천광역시 유통 농산물의 잔류농약 검출률이 8.0%인것과 비교해 보면 2배 이상 높게 검출된 것을 알 수 있었다. 조사결과 23건의 잔류농약이 검출된 시료에서 총 45 항목이 검출되었으며, 잔류농약 종류는 29 항목인 것으로 나타났다. 살충제 17 항목(37.8%), 살균제 16 항목(35.5%), 살응애제(살비제) 9 항목(20%), 식물생장조절제 3 항목(6.7%)이었다. 검출된 잔류농약 중 청경채에서 2건이 농약 잔류허용기준을 초과하였으며 초과된 농약은 famoxadone 0.034 mg/kg(기준: 0.01 mg/kg 이하, PLS), fenpyroximate 0.302 mg/kg(기준: 0.01 mg/kg 이하, PLS)이었다. 부적합률은 1.8%(2건/113건)이며, 평균적인 부적합률 1.2%와 비슷하게 나타났다. 이번 조사를 통해 밀키트 중 농산물에 다양한 종류의 농약이 잔류하는 것을 알 수 있었다. 이러한 결과를 토대로 밀키트 제품의 특성상 농산물에 대한 잔류농약 기준이 따로 설정되어 있지 않기 때문에 잔류농약에 대한 지속적인 모니터링이 필요하다고 판단된다.

기온감률 보정과 최적크리깅을 이용한 산악기상관측망 기온자료의 우리나라 500미터 격자화 (Gridding of Automatic Mountain Meteorology Observation Station (AMOS) Temperature Data Using Optimal Kriging with Lapse Rate Correction)

  • 윤유정;김서연;강종구;정예민;최소연;임윤교;서영민;원명수;천정화;김경민;장근창;임중빈;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.715-727
    • /
    • 2023
  • 산악지역의 기상정보를 상세하고 적절히 제공하기 위해 산림청에서는 2012년부터 전국 주요 산악지역을 대상으로 산악기상관측망(Automatic Mountain Meteorology Observation Station, AMOS)을 구축하여, 2022년 현재 464개의 관측소가 운영되고 있다. 본 연구에서는 AMOS 지점 관측을 이용하여 우리나라 산림에 적합한 기온 격자자료를 산출하기 위해서, 기온감률 보정을 적용한 최적의 크리깅(kriging) 기법을 제안하고 그 가용성을 평가하였다. 우선 통계적 처리를 통해 AMOS 기온자료의 이상치를 제거하였고, 이 자료를 이용하여 경험 베리오그램(variogram)에 가장 근사하는 이론 베리오그램을 도출하여 최적화 크리깅을 수행하였다. 이 때 기온감률 보정(lapse rate correction)을 적용하여 산악지형의 고도 변이가 반영되는 500 m 해상도의 기온격자지도를 생성하였다. 공간적으로 치우치지 않은 검증샘플을 이용한 암맹평가를 통해 본 기법의 가용성을 평가한 결과, 0.899-0.953의 상관계수 및 0.933-1.230℃의 오차를 나타내 기온감률 보정을 적용하지 않은 정규크리깅에 비해 정확도가 다소 향상되었다. 또한 기온감률 크리깅은 우리나라 산림의 복잡지형을 잘 표현하여, 강원도 산간지역과 해안산림지역의 국지적인 변이 및 지리산·내장산과 그 주변 산림의 지형적 차이와 같은 미세한 지역특성을 살릴 수 있다는 것이 가장 큰 장점이라고 할 수 있다.

지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석 (Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads)

  • 전준태;손호영;주부석
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.976-983
    • /
    • 2023
  • 연구목적: 지진하중을 받는 교량 구조물의 동적 거동은 지진파의 특성 혹은 재료 및 기하학적 특성과 같은 많은 불확실성에 영향을 받는다. 하지만 모든 불확실성 인자가 교량 구조물의 동적 거동에 중요한 영향을 미치진 않는다. 영향성이 낮은 불확실성 인자까지 고려한 확률론적 내진성능 평가는 많은 계산비용이 요구되기 때문에 교량의 동적 거동에 미치는 영향을 고려하여 불확실성 인자는 식별되어야 한다. 따라서 본 연구는 I형 곡선 거더를 갖는 단경간 교량의 동적 거동에 영향을 미치는 주요 매개변수를 식별하기 위해 전역민감도 분석을 수행하였다. 연구방법: 지진파의 불확실성과 곡선 교량의 재료 및 기하학적 불확실성을 고려하여 유한요소 해석을 수행하였으며 해석결과를 기반으로 대리모델을 작성하였다. 결정계수와 같은 성능평가지료를 이용하여 대리모델을 평가하였으며 최종적으로 대리모델 기반의 전역 민감도 분석을 수행하였다. 연구결과: 지진하중을 받는 I형 곡선 거더의 응력응답에 가장 큰 영향을 미치는 불확실성 인자는 최대지반가속도(PGA), 교각의 높이(h), 강재의 항복응력(fy) 순으로 나타났다. PGA, h, fy의 주효과 민감도 지수는 각각 0.7096, 0.0839, 0.0352로 나타났으며 총 민감도 지수는 각각 0.9459, 0.1297, 0.0678로 나타났다. 결론: I형 곡선 거더의 응력응답은 입력운동의 불확실성에 대한 영향성이 지배적이며 각 불확실성 인자 사이의 교호작용에 큰 영향을 받는다. 따라서 입력운동의 개수 및 intensity measure과 같은 입력운동의 불확실성에 대한 추가적인 민감도 분석과 곡선거더의 개수 및 곡률과 같은 구조적 불확실성까지 고려한 총 민감도 분석은 필요하다.

Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원 (Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML)

  • 윤유정;강종구;김서연;정예민;최소연;임윤교;서영민;원명수;천정화;김경민;장근창;임중빈;이양원
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1341-1352
    • /
    • 2023
  • 위성영상 기반의 정규식생지수(normalized difference vegetation index, NDVI)는 넓은 영역에서 주기적인 정보를 수집할 수 있어 산림 및 농업 모니터링에 주로 사용된다. 그러나 광학센서 기반 식생지수는 구름 등의 영향으로 일부 지역에서 결측을 가지기 때문에, 본 연구는 전천후 및 주야에 관계없이 관측 가능한 Sentinel-1의 합성 개구 레이더(synthetic aperture radar, SAR) 영상을 활용하여 Sentinel-2 NDVI 결측값을 복원하는 모델을 개발하였다. 이는 광학적으로 관측이 어려운 구름 조건이나 야간에도 NDVI를 추정할 수 있는 잠재력을 보여준다. Automated machine learning (AutoML)을 활용한 비선형 결측복원모델의 5폴드(fold) 교차검증 결과, 절대오차 7.214E-05, 상관계수 0.878의 NDVI 복원 성능을 보였다. 이를 통해 시공간 연속적인 NDVI 생산 방법론을 발전시켜, 전천후 식생 모니터링에 필요한 정보 생산에 기여할 수 있을 것으로 기대된다.

딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지 (Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images)

  • 서영민;윤유정;김서연;강종구;정예민;최소연;임윤교;이양원
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1413-1425
    • /
    • 2023
  • 기후변화로 인한 대형 산불의 빈도가 증가함에 따라 극심한 인명 및 재산상의 피해를 초래하고 있다. 이로 인해 많은 식생이 소실되며, 그 강도와 발생 형태에 따라 생태계 변화에 영향을 끼친다. 생태계 변화는 다시 산불 발생을 유발하여 2차 피해를 야기한다. 따라서 산불 피해지에 대한 정확한 탐지 및 면적 산정의 중요성이 지속적으로 제기되고 있다. 효율적인 산불 피해지 모니터링을 위해 산불 발생 후 실시간 지형 및 기상정보는 물론 피해지역의 영상을 대규모로 취득할 수 있는 위성영상이 주로 활용되고 있다. 최근, 합성곱 신경망(convolution neural network, CNN) 기반 모델부터 고성능 트랜스포머(Transformer) 기반 모델에 이르기까지 딥러닝 알고리즘이 빠르게 발전하면서 산림원격탐사에서 이를 적용한 연구가 활발히 이루어지고 있다. 하지만 현재까지 적용된 딥러닝 모델은 제한적이며 현업에서의 합리적인 활용을 위한 정량적 성능평가에 대한 보고가 부족한 상황이다. 따라서 본 연구에서는 모델에 따른 성능향상과 데이터 설계에 따른 성능향상을 중점적으로 비교 분석하였다. 미국 캘리포니아 지역을 대상으로 CNN 기반 모델의 U-Net, High Resolution Network-Object Contextual Representation (HRNet-OCR)을 활용하여 산불 피해지 모델을 구축하였다. 또한, 기본 파장대역과 함께 식생활력도 및 지표의 수분함량 정도를 고려하고자 normalized difference vegetation index (NDVI), normalized burn ratio (NBR)와 같은 산불 관련 분광지수를 산출하여 입력 이미지로 사용하였다. U-Net의 mean intersection over union (mIoU)이 0.831, HRNet-OCR이 0.848을 기록하여 두 모델 모두 우수한 영상분할 성능을 보였다. 또한, 밴드 반사도뿐 아니라 분광지수를 추가한 결과 모든 조합에서 평가지표 값이 상승하여 분광지수를 활용한 입력 데이터 확장이 픽셀 세분화에 기여함을 확인하였다. 이와 같은 딥러닝 방법론을 발전시킨다면 우리나라의 산불 피해지에 대한 신속한 파악 및 복구 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.

K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류 (Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering)

  • 김영준;배덕원;임정호;정시훈;추민기;한대현
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1043-1060
    • /
    • 2023
  • 최근 기후변화의 가속화로 바다에 의한 탄소의 흡수 작용을 칭하는 '블루 카본(blue carbon)'에 대한 관심이 많아지고 있지만, 탄소 순환의 핵심이 되는 해양 생태계에 대한 우리의 이해는 아직 부족한 실정이다. 본 연구는 탄소 순환을 고려한 글로벌 해양 생태 권역(marine eco-province)을 k-means clustering 기법을 활용하여 분류·분석하였다. 지난 20년 간(2001-2020) 위성을 활용하여 생산된 Carbon-based Productivity Model (CbPM) 순 일차 생산량(Net primary production, NPP), particulate inorganic and organic carbon (PIC and POC), 위성 관측과 재분석모델을 결합하여 생산한 해수면 염분(sea surface salinity, SSS) 및 온도(sea surface temperature, SST) 총 다섯가지 자료를 활용하였다. 최적화 과정을 거쳐 총 9개의 생태권역을 도출하였으며, 각 권역의 공간분포와 특성을 분석하였다. 이 중 5개의 권역은 주로 대양의 특성을 반영하고, 4개의 권역은 연안 및 고위도 해역의 특성을 반영하는 것으로 나타났다. 또한, 기존에 알려진 해양 생태 권역과의 정성적 비교를 통하여 탄소순환을 고려한 해양 생태권역의 특징을 상세히 분석하였다. 마지막으로 과거 5년 단위(2001-2005, 2006-2010, 2011-2015, 2016-2020)로 생태 권역의 변화를 분석하였으며, 연안생태계의 빠른 변화와 특히 담수유입으로 인해 생산량이 높고 생태적으로 중요한 권역의 감소를 확인하였다. 이러한 연구 결과는 탄소 순환 및 기후변화를 고려한 해양 생태 권역 분류 및 연안 관리에 대한 중요한 참고자료로 활용 될 수 있으며, 기후 변화에 취약한 지역에 대한 체계적인 관리 지침 개발에 활용될 수 있다.

Swin Transformer와 Sentinel-1 영상을 이용한 우리나라 저수지의 수체 탐지 (Waterbody Detection for the Reservoirs in South Korea Using Swin Transformer and Sentinel-1 Images)

  • 최소연;윤유정;강종구;김서연;정예민;임윤교;서영민;김완엽;최민하;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.949-965
    • /
    • 2023
  • 본 연구에서는 Sentinel-1 synthetic aperture radar 영상을 활용하여 딥러닝 모델인 Swin Transformer로 국내 농업용 저수지의 수표면적을 모니터링 하는 방법을 제시한다. Google Earth Engine 플랫폼을 이용하여 70만톤 급, 90만톤급, 150만톤급 저수지 7개소에 대한 2017년부터 2021년 데이터셋을 구축하였다. 저수지 4개소에 대한 영상 1,283장에 대해서 셔플링(suffling) 및 5-폴드(fold) 교차검증 기법을 적용하여 모델을 학습하였다. 시험평가 결과 모델의 윈도우 크기를 12로 설정한 Swin Transformer Large 모델은 각 폴드에서 평균적으로 99.54%의 정확도와 95.15%의 mean intersection over union (mIoU)을 기록하여 우수한 의미론적 분할 성능을 보여주었다. 최고 성능을 보여준 모델을 나머지 3개소 저수지 데이터셋에 적용하여 성능을 검증한 결과, 모든 저수지에서 정확도 99% 및 mIoU 94% 이상을 달성함을 확인했다. 이러한 결과는 Swint Transformer 모델이 국내의 농업용 저수지의 수표면적 모니터링에 효과적으로 활용될 수 있음을 보여준다.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.