• 제목/요약/키워드: ILOG

검색결과 53건 처리시간 0.017초

제약식 프로그래밍을 이용한 일방향 전송 무선 메쉬 네트워크에서의 최적 링크 스케쥴링 (The Optimal Link Scheduling in Half-Duplex Wireless Mesh Networks Using the Constraint Programming)

  • 김학진
    • Journal of Information Technology Applications and Management
    • /
    • 제23권2호
    • /
    • pp.61-80
    • /
    • 2016
  • The wireless mesh network (WMN) is a next-generation technology for data networking that has the advantage in cost and the flexibility in its construction because of not requiring the infra-structure such as the ethernet. This paper focuses on the optimal link scheduling problem under the wireless mesh network to effectuate real-time streaming by using the constraint programming. In particular, Under the limitation of half-duplex transmission in wireless nodes, this paper proposes a solution method to minimize the makespan in scheduling packet transmission from wireless nodes to the gateway in a WMN with no packet transmission conflicts due to the half-duplex transmission. It discusses the conflicts in packet transmission and deduces the condition of feasible schedules, which defines the model for the constraint programming. Finally it comparatively shows and discusses the results using two constraint programming solvers, Gecode and the IBM ILOG CP solver.

시간제약이 있는 차량경로문제에 대한 Hybrid 탐색 (Hybrid Search for Vehicle Routing Problem With Time Windows)

  • 이화기;이홍희;이성우;이승우
    • 산업경영시스템학회지
    • /
    • 제29권3호
    • /
    • pp.62-69
    • /
    • 2006
  • Vehicle routing problem with time windows is determined each vehicle route in order to minimize the transportation costs. All delivery points in geography have various time restriction in camparision with the basic vehicle routing problem. Vechicle routing problem with time windows is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a tabu search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems.

제약 프로그래밍과 메타휴리스틱을 활용한 차량 일정계획 시스템 개발에 관한 연구 (A Study on Developing Vehicle Scheduling System using Constraint Programming and Metaheuristics)

  • 김용환;장용성;유환주
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.979-986
    • /
    • 2002
  • Constraint Programming is an appealing technology for modeling and solving various real-world problems. and metaheuristic is the most successful technique available for solving large real-world vehicle routing problems. Constraint Programming and metaheuristic are complementary to each other. This paper describes how iterative improvement techniques can be used in a Constraint Programming framework(LOG Solver and ILOG Dispatcher) for Vehicle Routing Problem. As local search gets trapped in local solution, the improvement techniques are used in conjunction with metaheuristic method.

  • PDF

차량경로 문제에 대한 Guided Tabu 검색 (Study on the Guided Tabu Search for the Vehicle Routing Problem)

  • 이승우;이화기
    • 대한안전경영과학회지
    • /
    • 제10권1호
    • /
    • pp.145-153
    • /
    • 2008
  • The vehicle routing problem determines each vehicle routes to find the transportation costs, subject to meeting the customer demands of all delivery points in geography. Vehicle routing problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a tabu search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems. And computational experiments on these instances show that the proposed heuristic yields better results than the simple tabu search does.

건설기계 유압밸브 생산을 위한 일정계획 시스템 개발 (Development of Scheduling System for Production of the Hydraulic Control Valve of Construction Equipment)

  • 김기동;이보헌
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.61-67
    • /
    • 2007
  • The construction machine is the composite machine assembled by about 30,000 parts. Excavator, one kind of a construction machine, plays the leading role for export of construction equipment. It is generally impossible to produce all of the items within one company. Especially the supply of hydraulic control valves, one of the core part of the construction equipment, depends on the import heavily. So it is important to make an efficient production plan of hydraulic control valves in the company. The most important thing for the production scheduling of a hydraulic control valve is to make production schedule keeping the start date for assembly line for an excavator and to make minimization of the stock level. The production plan of hydraulic control valve includes the decision of the quantity supplied by subcontractor. This paper presents a scheme for a scheduling system of the hydraulic control valve considering the schedule of the assembly line for excavator production. This paper provides a methodology, which can make a plan of supply and production and generate a detailed schedule for daily production.

  • PDF

Production Planning Method Using the Push-back Heuristic Algorithm: Implementation in a Micro Filter Manufacturer in South Korea

  • Sung, Shin Woong;Jang, Young Jae;Lee, Sung Wook
    • Industrial Engineering and Management Systems
    • /
    • 제14권4호
    • /
    • pp.401-412
    • /
    • 2015
  • In this paper, we present a modeling approach to production planning for an actual production line and a heuristic method. We also illustrate the successful implementation of the proposed method on the production line. A heuristic algorithm called the push-back algorithm was designed for a single machine earliness/tardiness production planning with distinct due date. It was developed by combining a minimum slack time rule and shortest processing time rule with a push-back procedure. The results of a numerical experiment on the heuristic's performance are presented in comparison with the results of IBM ILOG CPLEX. The proposed algorithm was applied to an actual case of production planning at Woongjin Chemical, a leading manufacturer of filter products in South Korea. The seven-month execution of our algorithm led to a 24.5% decrease in the company's inventory level, thus demonstrating its practicality and effectiveness.

서비스 시간대별 교통상황을 고려한 차량경로문제 (A Vehicle Routing Problem Which Considers Traffic Situation by Service Time Zones)

  • 김기태;전건욱
    • 산업공학
    • /
    • 제22권4호
    • /
    • pp.359-367
    • /
    • 2009
  • The vehicle travel time between the demand points in downtown area is greatly influenced by complex road condition and traffic situation that change real time to various external environments. Most of research in the vehicle routing problems compose vehicle routes only considering travel distance and average vehicle speed between the demand points, however did not consider dynamic external environments such as traffic situation by service time zones. A realistic vehicle routing problem which considers traffic situation of smooth, delaying, and stagnating by three service time zones such as going to work, afternoon, and going home was suggested in this study. A mathematical programming model was suggested and it gives an optimal solution when using ILOG CPLEX. A hybrid genetic algorithm was also suggested to chooses a vehicle route considering traffic situation to minimize the total travel time. By comparing the result considering the traffic situation, the suggested algorithm gives better solution than existing algorithms.

무인 항공기 생존성 극대화를 위한 이동 경로 계획 알고리즘 선정 (A Selection of Path Planning Algorithm to Maximize Survivability for Unmanned Aerial Vehicle)

  • 김기태;전건욱
    • 대한안전경영과학회지
    • /
    • 제13권2호
    • /
    • pp.103-113
    • /
    • 2011
  • This research is to select a path planning algorithm to maximize survivability for Unmanned Aerial Vehicle(UAV). An UAV is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). In this research, a mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and verified by using ILOG CPLEX. A path planning algorithm for UAV is selected by comparing of SPP(Shortest Path Problem) algorithms which transfer MRPP into SPP.

전시 군수반응시간 최소화를 위한 복수 순회구매자 문제 (The Multiple Traveling Purchaser Problem for Minimizing Logistics Response Time in Wartime)

  • 최명진
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.431-437
    • /
    • 2010
  • It's strongly needed to minimize the logistics response time for supporting military operations in wartime. In this paper, we suggest the ILP formulation for minimizing logistics response time in wartime. Main structure of this formulation is based on the traveling purchaser problem(TPP) which is a generalized form of the well-known traveling salesman problem(TSP). In the case of general TPP, objective function is to minimize the sum of traveling cost and purchase cost. But, in this study, objective function is to minimize traveling cost only. That's why it's more important to minimize traveling cost(time or distance) than purchase cost in wartime. We find out optimal solution of this problem by using ILOG OPL STUDIO(CPLEX v.11.1) and do the sensitive analysis about computing time according to number of operated vehicles.

유전자 알고리듬을 이용한 운행비용 최소화 다용량 차량경로문제 (A Heterogeneous VRP to Minimize the Transportation Costs Using Genetic Algorithm)

  • 임무균;전건욱
    • 산업공학
    • /
    • 제20권2호
    • /
    • pp.103-111
    • /
    • 2007
  • A heterogeneous VRP which considers various capacities, fixed and variable costs was suggested in this study. The transportation cost for vehicle is composed of its fixed and variable costs incurred proportionately to the travel distance. The main objective is to minimize the total sum of transportation costs. A mathematical programming model was suggested for this purpose and it gives an optimal solution by using OPL-STUDIO (ILOG CPLEX). A genetic algorithm which considers improvement of an initial solution, new fitness function with weighted cost and distance rates, and flexible mutation rate for escaping local solution was also suggested. The suggested algorithm was compared with the results of a tabu search and sweeping method by Taillard and Lee, respectively. The suggested algorithm gives better solutions rather than existing algorithms.