• Title/Summary/Keyword: IKONOS DEM

Search Result 44, Processing Time 0.022 seconds

Comparison of DEM Accuracy and Quality over Urban Area from SPOT, EOC and IKONOS Stereo Pairs (SPOT, EOC, IKONOS 스테레오 영상으로부터 생성된 도심지역 DEM의 정확도 및 성능 비교분석)

  • 임용조;김태정
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.221-231
    • /
    • 2002
  • In this study we applied a DEM generation algorithm developed in-house to satellite images at various resolution and discussed the results. We tested SPOT images at l0m resolution, EOC images at 6.6m and IKONOS images at 1m resolution. These images include the same urban area in Daejeon city. For camera model, we used Gupta & Hartley's(1997) DLT model for all three image sets. We carried out accuracy assessment using USGS DTED for SPOT and EOC and 23 check points for IKONOS. The assessment showed that SPOT DEM had about 38m RMS error, EOC DEM 12m RMS error and IKONOS DEM 6.5m RMS error. In terms of image resolution, SPOT and EOC DEM error corresponds to 2∼4 pixels where as IKONOS DEM error 6∼7pixels. IKONOS DEM contains more errors in pixels. However, in IKONOS DEM, individual buildings, apartments and major roads are identifiable. All three DEMs contained errors due to height discontinuity, occlusion and shadow. These experiments show that our algorithm can generate urban DEM from 1m resolution and that, however, we need to improve the algorithm to minimize effects of occlusion and building shadows on DEMs.

Matching Techniques with Land Cover Image for Improving Accuracy of DEM Generation from IKONOS Imagery (IKONOS 영상을 이용한 DEM 추출의 정확도 향상을 위한 토지피복도 활용 정합기법)

  • Lee, Hyo Seong;Park, Byung Uk;Han, Dong Yeob;Ahn, Ki Weon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.153-160
    • /
    • 2009
  • In relation to digital elevation model(DEM) production using high resolution satellite imagery, existing studies present that DEM accuracy differently show according to land cover property. This study therefore proposes auto-selection method of window size for correlation matching according to land cover property of IKONOS Geo-level stereo image. For this, land cover classified image is obtained by IKONOS color image with four bands. In addition, correlation-coefficients are computed at regular intervals in pixels of the window-search area to shorten of matching time. As the results, DEM by the proposed method showed more accurate than DEM using the fixed window-size matching. We estimate that accuracy of the proposed DEM improved more than DEM by digital map and ERDAS in agricultural land.

DEM generation from an IKONOS stereo pair using EpiMatch and Graph-Cut algorithms

  • Kim, Tae-Jung;Im, Yong-Jo;Kim, Ho-Won;Kweon, In-So
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.524-529
    • /
    • 2002
  • In this paper, we report the development of two DEM (digital elevation model) generation algorithms over urban areas from an IKONOS stereo pair. One ("EpiMatch") is originally developed for SPOT images and modified for IKONOS images. It uses epipolar geometry for accurate DEM generation. The other is based on graph-cut algorithm in 3D voxel space. This algorithm is believed to work better on height discontinuities than EpiMatch. An IKONOS image pair over Taejon city area was used for tests. Using ground control points obtained from differential GPS, camera model was set up and stereo matching applied. As a result, two DEMs over urban areas were produced. Within a DEM from EpiMatch small houses appear as small "cloudy" patches and large apartment and industrial buildings are visually identifiable. Within the DEM from graph-cut we could achieve better height information on building boundaries. The results show that both algorithms can generate DEMs from IKONOS images although more research is required on handling height discontinuities (for "EpiMatch") and on faster computation (for "Graph-cut").

  • PDF

DEM Generation from IKONOS Imagery by Using Parallel Projection Model (평행투영모형에 의한 IKONOS 위성영상의 수치고도모형 생성)

  • Kim, Eui-Myoung;Kim, Seong-Sam;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.55-61
    • /
    • 2005
  • Digital Elevation Model (DEM) generation from remotely sensed imagery is crucial for a variety of mapping applications such as ortho-photo generation, city modeling. High resolution imaging satellites such as SPOT-5, IKONOS, QUICK-BIRD, ORBVIEW constitute an excellent source for efficient and economic generation of DEM data. However, prerequisite knowledge in the areas of sensor modeling, epipolar resampling, and image matching is required to generate DEM from these high resolution satellite imagery. From the above requirements, epipolar resampling emerges as the most important factors. Research attempts in this area are still in high demand and short supply. Another cause that adds to the complication of the problem is that most studies of DEM generation from IKONOS scenes have been based on rational function model. In this paper, we proposed a new methodology for DEM generation from satellite scenes using parallel projection model which is sensor independent, makes it possible for sensor modeling and epipolar resampling by only few control points. The performance and feasibility of the developed methodology is evaluated through real dataset captured by IKONOS.

  • PDF

Accuracy Improvement of KOMPSAT-3 DEM Using Previous DEMs without Ground Control Points

  • Lee, Hyoseong;Park, Byung-Wook;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.241-248
    • /
    • 2017
  • GCPs (Ground Control Points) are needed to correct the DEM (Digital Elevation Model) produced from high-resolution satellite images and the RPC (Rational Polynomial Coefficient). It is difficult to acquire the GCPs through field surveys such as GPS surveys and to read the image coordinates corresponding to the GCPs. In addition, GCPs cannot cover the entire image of the test site, and the RPC correction results may be influenced by the arrangement and distribution of the GCPs in the image. Therefore, a new method for the RPC correction is needed. In this study, an LHD (Least-squares Height Difference) DEM matching method was applied using previous DEMs: SRTM DEM, digital map DEM, and corrected IKONOS DEM. This was carried out to correct the DEM produced from KOMPSAT-3 satellite images and the provided RPC without GCPs. The IKONOS DEM had the highest accuracy, and the height accuracy was about ${\pm}3m$ RMSE in a mountainous area and about ${\pm}2m$ RMSE in an area with only low heights.

Accuracy Investigation of DEM generated from Heterogeneous Stereo Satellite Images using Rational Polynomial Coefficients (RPC를 이용한 이종센서 위성영상으로부터의 수치고도모형 정확도 평가)

  • Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.121-128
    • /
    • 2014
  • This study investigated the accuracy of DEM generated by heterogeneous stereo satellite images based on RPC. Heterogeneous sensor images with different spatial resolution are SPOT-5 panchromatic and IKONOS images. For the accuracy evaluation of the DEM, we compared the DEMs generated from two kinds of sensors and that produced using homogeneous SPOT-5 and IKONOS stereo images. As results of the evaluation, accuracy of 3D positioning by heterogeneous images was substantially similar to that of homogeneous stereo images for exact conjugate points. But, in terms of quality of the DEM, DEM generated by heterogeneous sensor showed a lower accuracy about twice in RMSE and about 3 times in LE90 than that of homogeneous sensors. As a result, DEM can be generated by using heterogenous satellite imagery. But if we use a stereo image with different spatial resolution, the performance of image matching was very important factor for the production of high-quality DEM.

Research for DEM and ortho-image generated from high resolution satellite images. (고해상도 영상 자료로부터 추출한 DEM 및 정사영상 생성에 관한 연구)

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Kim, Tae-Jung;Park, Wan-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.80-85
    • /
    • 2008
  • 최근 도심지역이 급변하고 고해상도 위성영상의 보급이 증가함에 따라 고해상도 위성영상을 이용한 수치표고모델과 정사영상 생성에 관한 연구가 활발해 지고 있다. 본 연구에서는 IKONOS, SPOT5, QUICKBIRD, KOMPSAT2 위성영상을 이용하여 DEM 과 정사영상을 생성하였으며 USGS DTED 와 기준점을 이용하여 결과의 정확도를 비교 분석하였다. 보다 정확한 DEM 생성을 위해 자동 피라미드 알고리즘을 적용하고 영상 정합시 에피폴라 기하학을 적용하였다. 정사 영상 생성시 DTED 높이값을 이용하여 보정을 수행하였으며 생성 속도를 높이기 위하여 리샘플링 그리드를 적용하였다. 본 연구에서 DEM 과 정사영상 생성시 QUICKBIRD 와 SPOT5 의 경우 영상의 용량이 매우 커 메모리 부족문제와 알고리즘 수행 속도 저하가 발생함을 확인하였다. 이를 개선하기 위하여 DEM 생성시 정합 후보점의 개수를 줄이는 알고리즘을 고안하여 기존에 메모리 문제로 생성하지 못했던 QUICKBIRD와 SPOT5 의 DEM 을 생성하였으며 정사 영상 생성시 리샘플링 그리드를 적용하여 고해상도 정상영상 생성 속도 개선에 상당한 효과를 가져왔다. 그러나 고해상도 위성 영상의 용량이 점점 커져감에 따라 이러한 메모리 문제와 처리 속도 저하에 관한 문제는 추후 계속적으로 연구되어야 할 부분이라고 할 수 있다. 본 연구에서 생성한 IKONOS, SPOT5, QUICKBIRD DEM 의 정확도를 USGS DTED 와 비교한 결과 13${\sim}$15 m 정도의 RMS 높이 오차가 산출되었으며 생성된 IKONOS, QUICKBIRD, KOMPSAT2 정사영상을 기준점과 비교한 결과 3 m 정도의 거리오차가 산출되었음을 확인하였다.

  • PDF

3-D Positioning and DEM Generation from the IKONOS Stereo Images (IKONOS 입체영상을 이용한 3차원 위치 결정과 DEM 생성)

  • 지학송;안기원;박병욱;이건기;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.423-431
    • /
    • 2003
  • This study presents on generation coefficients of the RFM using GEO-level stereo images of the IKONOS satellite. 3-D positioning and DEM generation of this model on the test field. In result, the maximum error of image coordinates acquired by the upward transform of the RFM did nat exceed 8 pixels. DEM was generated with kriging interpolation extracted three dimensional ground coordinate to rational quadratic function form, me compared it to reference digital elevation model made from 1:5,000 digital map and 1:1,000 digital map, and so, could generate digital elevation model in the accuracy as average RMSE of elevation was ${\pm}$ 3∼5 m in RFM.

  • PDF

DEM Generation by the Matching Line Using Exterior Orientation Parameters of the IKONOS Geo Imagery (IKONOS 위성영상의 외부표정요소로부터 정합선 수립에 의한 DEM 생성)

  • Lee, Hyo-Seong;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.367-376
    • /
    • 2006
  • This study determines the optimum polynomial of exterior orientation parameters(EOPs) as a function of line number of linear array scanner. To estimate priori EOPs, meta data of IKONOS scene and ground control points are used. We select a first order polynomial and a constant for position elements modeling and rotation elements modeling. Positioning accuracy of the determined EOPs is compared with that of RPCs bias-corrected by the least squares adjustment. There is almost no difference between accuracies of the two methods. To obtain digital elevation model(DEM), matching line is established by the EOPs. The DEM is compared with DEM generated by ERDAS IMAGINE software, which utilizes the bias-corrected RPCs. Height differences of DEMs by the two methods are ranged within a allowable standard deviation. The produced DEM, therefore, shows accuracy similar to the verified method.