• Title/Summary/Keyword: IKONOS 영상

Search Result 190, Processing Time 0.038 seconds

The Geometric Correction of IKONOS Image Using Rational Polynomial Coefficients and GCPs (RPC와 GCP를 이용한 IKONOS 위성영상의 기하보정)

  • 강준묵;이용욱;박준규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • IKONOS satellite images are particularly well suited for stereo feature extraction. But, because IKONOS doesn't offer information about the satellite ephemeris and attitude, we have to use IKONOS RPC(Rational Polynomial Coefficients) data for 3-D feature extraction. In this study, it was intended to increase the accuracy and the efficiency in application of high resolution satellite images. Therefore, this study develop the program to extract 3-D feature information and have analyzed the geometric accuracy of the IKONOS satellite images by means of the change with the number, distribution and height of GCPs. This study will provide basic information for luther studies of the accuracy correction in IKONOS and high resolution satellite images.

Detecting and Restoring the Occlusion Area for Generating the True Orthoimage Using IKONOS Image (IKONOS 정사영상제작을 위한 폐색 영역의 탐지와 복원)

  • Seo Min-Ho;Lee Byoung-Kil;Kim Yong-Il;Han Dong-Yeob
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2006
  • IKONOS images have the perspective geometry in CCD sensor line like aerial images with central perspective geometry. So the occlusion by buildings, terrain or other objects exist in the image. It is difficult to detect the occlusion with RPCs(rational polynomial coefficients) for ortho-rectification of image. Therefore, in this study, we detected the occlusion areas in IKONOS images using the nominal collection elevation/azimuth angle and restored the hidden areas using another stereo images, from which the rue ortho image could be produced. The algorithm's validity was evaluated using the geometric accuracy of the generated ortho image.

Integration of IKONOS-2 Satellite Imagery and ALS dataset by Compensating Biases of RPC Models (RPC 모델의 보정을 통한 IKONOS-2 위성영상과 항공레이저측량 자료의 정합에 관한 연구)

  • Lee, Jaebin;Yu, Kiyun;Lee, Changno;Song, Wooseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.437-444
    • /
    • 2008
  • In the paper, a methodology is verified to integrate IKONOS-2 satellite imagery and ALS dataset by compensating biases of RPC models. To achieve this, conjugate features from both data should be extracted in advance. For this purpose, linear features are chosen as conjugate features because they can be accurately extracted from man-made structures in urban area and more easily extracted than point features from ALS data. Then, observation equations are established from similarity measurements of the extracted features. During the process, several kinds of transformation functions were selected and used to register them. In addition, it was also analyzed how the number of linear features used as control features affects the accuracy of registration results. Finally, the results were evaluated by using check-points obtained from DGPS surveying techniques and it was clearly demonstrated that the proposed algorithms are appropriate to integrate these data.

DEM Generation from IKONOS Satellite Imagery (IKONOS 위성영상의 수치고도모형 생성)

  • Kim, Eui-Myoung;Kim, Seong-Sam;Yoo, Hwan-Hee
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.369-374
    • /
    • 2005
  • 정사영상 생성, 도시 공간의 모형화 등 도면화의 다양한 응용분야에 적용을 위해서는 위성 영상으로부터 수치고도모형을 생성하는 것은 중요하며, SPOT-5, IKONOS, QUICKBIRD, ORBVIEW 등의 고해상도 위성영상은 효율적이고 경제적으로 수치고도모형을 생성할 수 있는 정보를 제공하고 있다. 그러나, 이들 고해상도 위성영상으로부터 수치고도모형을 생성하기 위해서는 센서모형화, 에피폴라 영상 생성 그리고 영상정합에 대한 사전지식이 필요하다. 이들 중 에피폴라 영상생성은 중요한 인자이며 이에 대한 연구는 아직 미흡한 실정이다. 뿐만 아니라, IKONOS 위성영상으로부터 수치고도모형을 생성하는 연구는 다항식비례모형에 기반한 연구가 주로 이루어졌다. 이에 본 연구에서는 센서 독립적이면서 적은 수의 기준점만으로 센서모형화와 에피폴라 영상생성이 가능한 평행투영모형을 이용하여 수치고도모형을 생성하는 일련의 처리과정을 새롭게 제안하였다. 제안된 방법론은 IKONOS 위성영상을 이용하여 적용하고 평가하였다.

  • PDF

Modified a'trous Algorithm based Wavelet Pan-sharpening Method Using IKONOS Image (IKONOS 영상을 이용한 수정된 a'trous 알고리즘 기반 웨이블릿 영상융합 기법)

  • Kim, Yong Hyun;Choi, Jae Wan;Kim, Hye Jin;Kim, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.305-309
    • /
    • 2009
  • The object of image fusion is to integrate information from multiple images as the same scene. In the satellite image fusion, many image fusion methods have been proposed for combining a high resolution panchromatic(PAN) image with low resolution multispectral(MS) images and it is very important to preserve both the spatial detail and the spectral information of fusion result. The image fusion method using wavelet transform shows good result compared with other fusion methods in preserving spectral information. This study proposes a modified a'trous algorithm based wavelet image fusion method using IKONOS image. Based on the result of experiment using IKONOS image, we confirmed that proposed method was more effective in preserving spatial detail and spectral information than existing fusion methods using a'trous algorithm.

Bias Compensation of IKONOS Geo-level Satellite Imagery Using the Digital Map (수치지도를 이용한 IKONOS Geo-level 위성영상의 편의보정)

  • Lee Hyo Sung;Shin Sok Hyo;Ahn Ki Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.331-338
    • /
    • 2004
  • This paper describes capability of utilizing ground control points(GCPs) obtained from 1:1,000 and 1:5,000 digital vector maps to correct image coordinates which have errors due to bais rational polynomial coefficient(RPC) of IKONOS Geo-level stereo images. The accuracy of the bias-corrected images was improved to approximately 4m and 2m in planimetry and height, respectively. The accuracy was also compared with results from using GCPs obtained by GPS surveying. In consequence, bias-compensated IKONOS sereo imagery was evaluated to satisfy generating topographic map 1:10,000.

DEM Generation from IKONOS Imagery by Using Parallel Projection Model (평행투영모형에 의한 IKONOS 위성영상의 수치고도모형 생성)

  • Kim, Eui-Myoung;Kim, Seong-Sam;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.55-61
    • /
    • 2005
  • Digital Elevation Model (DEM) generation from remotely sensed imagery is crucial for a variety of mapping applications such as ortho-photo generation, city modeling. High resolution imaging satellites such as SPOT-5, IKONOS, QUICK-BIRD, ORBVIEW constitute an excellent source for efficient and economic generation of DEM data. However, prerequisite knowledge in the areas of sensor modeling, epipolar resampling, and image matching is required to generate DEM from these high resolution satellite imagery. From the above requirements, epipolar resampling emerges as the most important factors. Research attempts in this area are still in high demand and short supply. Another cause that adds to the complication of the problem is that most studies of DEM generation from IKONOS scenes have been based on rational function model. In this paper, we proposed a new methodology for DEM generation from satellite scenes using parallel projection model which is sensor independent, makes it possible for sensor modeling and epipolar resampling by only few control points. The performance and feasibility of the developed methodology is evaluated through real dataset captured by IKONOS.

  • PDF

Standardizing Agriculture-related Land Cover Classification Scheme using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업지역 토지피복 분류기준 설정)

  • Hong Seong-Min;Jung In-Kyun;Kim Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat + ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by National Geographic Information based on aerial photograph and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The classification result by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

Applicability of Multispectral IKONOS imagery for the Interpretation of Forest Stand Characteristics (임상 판독을 위한 IKONOS 다중분광 영상의 적요성 분석)

  • 김선화;이규성;이지민
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.139-144
    • /
    • 2003
  • 수종, 영급, 밀도 등과 같은 산림의 특성을 나타내는 임상구분은 주로 항공사진 육안판독을 통하여 이루어져 왔다. 최근 항공사진과 유사한 공간해상도를 갖춘 고해상도 위성영상이 제공되면서 이를 이용한 임상구분의 가능성에 대한 관심이 높아지고 있다. 본 연구에서는 울산 인근 산림지역의 1m 공간해상도의 IKONOS 입체쌍 영상을 이용하여 임상 판독의 가능성을 분석하였다. IKONOS영상은 기존의 수치임상도와의 중첩을 위하여 수치고도자료(DEM)를 이용한 정사보정을 수행하였으며, 분광밴드의 조합을 통한 칼라영상을 이용하여 육안판독을 시도하였다. 육안판독결과 IKONOS 칼라합성영상에서 천연 소나무림과 활엽수림의 육안구분이 흑백항공사진에 비해 뚜렷하게 나타나는 것을 볼 수 있었으며, 임분의 밀도가 영상에서 나타나는 질감과 패턴의 차이로 구분이 가능하였다. 또한 기존의 임상도를 중첩하여 최근 산지개발, 산불 등으로 훼손된 지점에 대한 구분이 용이하기 때문에 기존의 수치임상도를 화연상에서 직접 갱신함으로써 최근의 산림현황정보의 유지를 하는데 적합한 것으로 나타났다.

  • PDF

Comparison of DEM Accuracy and Quality over Urban Area from SPOT, EOC and IKONOS Stereo Pairs (SPOT, EOC, IKONOS 스테레오 영상으로부터 생성된 도심지역 DEM의 정확도 및 성능 비교분석)

  • 임용조;김태정
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.221-231
    • /
    • 2002
  • In this study we applied a DEM generation algorithm developed in-house to satellite images at various resolution and discussed the results. We tested SPOT images at l0m resolution, EOC images at 6.6m and IKONOS images at 1m resolution. These images include the same urban area in Daejeon city. For camera model, we used Gupta & Hartley's(1997) DLT model for all three image sets. We carried out accuracy assessment using USGS DTED for SPOT and EOC and 23 check points for IKONOS. The assessment showed that SPOT DEM had about 38m RMS error, EOC DEM 12m RMS error and IKONOS DEM 6.5m RMS error. In terms of image resolution, SPOT and EOC DEM error corresponds to 2∼4 pixels where as IKONOS DEM error 6∼7pixels. IKONOS DEM contains more errors in pixels. However, in IKONOS DEM, individual buildings, apartments and major roads are identifiable. All three DEMs contained errors due to height discontinuity, occlusion and shadow. These experiments show that our algorithm can generate urban DEM from 1m resolution and that, however, we need to improve the algorithm to minimize effects of occlusion and building shadows on DEMs.