• 제목/요약/키워드: IKK

검색결과 111건 처리시간 0.025초

Hsp70와 IKKγ에 의한 NF-κB 활성억제의 상승효과 (Hsp70 and IKKγ Synergistically Suppress the Activation of NF-κB)

  • 김미정;김가혜;김문정;김진익;최혜정;문자영;주우홍;김동완
    • 생명과학회지
    • /
    • 제26권9호
    • /
    • pp.991-998
    • /
    • 2016
  • NF-κB는 anti-apoptotic gene을 유도하는 전사인자로서 대부분의 세포의 생존에 필요하다. 그러나 NF-κB가 많은 종류의 암세포에서 지속적으로 과다 활성화됨이 알려지면서 NF-κB의 활성억제가 암의 예방과 치료에 유효하다는 점이 알려지게 되었다. 한편, Hsp70가 NF-κB의 활성을 조절한다는 사실이 알려지면서 Hsp70를 이용한 암예방과 치료가 주목받게 되었으나 아직 Hsp70에 의한 NF-κB의 활성조절기전은 명확하지 않다. 본 연구에서는 Hsp70에 의한 NF-κB의 활성조절과정에서 IKK complex의 구성성분인 IKKγ의 역할을 검토하였다. IKKγ의 wild type과 deletion mutants를 이용하여 Hsp70와 관련된 NF-κB의 활성조절을 연구한 결과 Hsp70는 NF-κB의 활성화를 억제하였으며, 이러한 억제효과는 IKKγ가 과발현되었을 때 더욱 증가하였다. 또한 IKKγ의 N-말단의 IKKβ 결합부위와 C-말단의 Leucine zipper 및 Zinc finger부위는 Hsp70와 연관된 NF-κB억제작용에 필요하지 않는 것으로 나타났으며, Hsp70와 IKKγ에 의한 NF-κB의 활성억제는 IκBα의 인산화와 분해를 저해함에 의해 일어나는 것으로 나타났다. 또한 RAW264.7 macrophage세포에서 LPS에 의한 COX-2의 발현유도는 Hsp70와 IKKγ가 동시에 발현 되었을 때 가장 효과적으로 억제되었다. 이상의 결과로부터 Hsp70에 의한 NF-κB의 활성억제작용은 IKKγ에 의해 상승됨을 알 수 있었으며, Hsp70와 IKKγ를 적절히 이용하면 NF-κB의 과다활성에 의해 발생하는 각종 질병의 예방과 치료에 도움을 줄 수 있을 것으로 기대된다.

Toll-like receptor 2, 3, 4의 신호전달체계 조절을 통한 curcumin의 항암${\cdot}$항염증 효과 (Anti-cancer and Anti-inflammatory Effects of Curcumin by the Modulation of Toll-like Receptor 2, 3 and 4)

  • 강순아;;윤형선
    • 한국식품과학회지
    • /
    • 제39권2호
    • /
    • pp.175-180
    • /
    • 2007
  • TLRs는 병원균이 숙주의 몸 속에 들어 왔을 때, 병원균들이 가지고 있는 독특한 구조를 인식하여 선천성 면역반응과 뒤이어 후천성 면역반응을 유도하는 중요한 역할을 한다. 우리는 이번 실험을 통하여 curcumin이 선행연구에서 밝혀낸 TLR4 뿐만 아니라 TLR2와 TLR6 그리고 TLR3를 또한 분자학적인 타깃으로 할 수 있다는 것을 알아내었다. Curcumin이 MALP-2(TLR2,6 agonist)에 의해서 유도된 IRAK-1 degradation을 억제시켰다. 이러한 결과는 curcumin의 분자학적인 타깃이 IRAK-1위에 놓여 있으며, TLR2와 TLR6가 될 것이라는 가능성을 제시해 준다고 할 수 있다. 또한 curcumin은 viral 자극제인 poly[I:C](TLR3 agonist)에 의해서 유도된 IRF3나 $NF-{\kappa}B$ 활성화를 억제하였지만, TRIF에 의해서 유도된 IRF3 활성화는 억제시키지를 못하였다. 이러한 결과 또한 TLR3 자체가 curcumin의 분자학적인 타깃이라는 가능성을 제시해 준다고 할 수 있겠다. 이러한 결과를 종합해 볼때, curcumin의 분자학적인 타깃이 $IKK{\beta}$ 이외에 모든 TLRs가 될 수 있다는 가능성을 제시해 준다고 할 수 있겠다. 이러한 결과는 curcumin이 그람음성균 뿐만이 아니라 바이러스나 박테리아 등 여러 병원균들로부터 유도되는 염증반응이나 만성적인 질병들을 조절할 수 있다는 것을 보여주는 결과라 할 수 있겠다.

Rifampicin Inhibits the LPS-induced Expression of Toll-like Receptor 2 via the Suppression of NF-${\kappa}B$ DNA-binding Activity in RAW 264.7 Cells

  • Kim, Seong-Keun;Kim, Young-Mi;Yeum, Chung-Eun;Jin, Song-Hyo;Chae, Gue-Tae;Lee, Seong-Beom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.475-482
    • /
    • 2009
  • Rifampicin is a macrocyclic antibiotic which is used extensively for treatment against Mycobacterium tuberculosis and other mycobacterial infections. Recently, a number of studies have focused on the immune-regulatory effects of rifampicin. Therefore, we hypothesized that rifampicin may influence the TLR2 expression in LPS-activated RAW 264.7 cells. In this study, we determined that rifampicin suppresses LPS-induced TLR2 mRNA expression. The down-regulation of TLR2 expression coincided with decreased production of TNF-$\alpha$ Since NF-${\kappa}B$ is a major transcription factor that regulates genes for TLR2 and TNF-$\alpha$, we examined the effect of rifampicin on the LPS-induced NF-${\kappa}B$ activation. Rifampicin inhibited NF-${\kappa}B$ DNA-binding activity in LPS-activated RAW 264.7 cells, while it did not affect IKK$\alpha/\beta$ activity. However, rifampicin slightly inhibited the nuclear translocation of NF-${\kappa}B$ p65. In addition, rifampicin increased physical interaction between pregnane X receptor, a receptor for rifampicin, and NF-${\kappa}B$ p65, suggesting pregnane X receptor interferes with NF-${\kappa}B$ binding to DNA. Taken together, our results demonstrate that rifampicin inhibits LPS-induced TLR2 expression, at least in part, via the suppression of NF-${\kappa}B$ DNA-binding activity in RAW 264.7 cells. Thus, the present results suggest that the rifampicin-mediated inhibition of TLR2 via the suppression of NF-${\kappa}B$ DNA-binding activity may be a novel mechanism of the immune-suppressive effects of rifampicin.

유근피(楡根皮) 약침의 $NF-{\kappa}B$ 활성 억제능이 생쥐의 Type II Collagen 유발 관절염에 미치는 영향 (The Effectiveness of Ulmus Davidiana Planch Herbal Acupuncture to Inhibit $NF-{\kappa}B$ Activation on Type II Collagen-induced Arthritis in Mice)

  • 이아람;변혁;박인식;정찬영;강민주;김은정;이승덕;김갑성
    • Journal of Acupuncture Research
    • /
    • 제24권6호
    • /
    • pp.15-27
    • /
    • 2007
  • Objectives : The purpose of this study is to investigate the effectiveness of Ulmus davidiana Planch herbal acupuncture(UA) to inhibit nuclear $factor(NF)-{\kappa}B$ activation on type II collagen-induced arthritis (CIA) in mice. Methods : Using an in vitro test, the synoviocytes picked out from the experimental CIA mice were subcultured. The synoviocyte cells were treated with phorbol-12-myristate-13-acetate(PMA) for 1 hour prior to the addition of indicated concentrations($0.4\;-\;1.0mg/m{\ell}$) of UA, and the cells were further incubated for 24 hours. The in vivo test, $NF-{\kappa}B$ p65, inducible nitric oxide synthase(iNOS), cyclooxygenase-2(COX-2), vascular cell adhesion molecule(VCAM)-1 production and apoptosis was observed by immunohistochemical staining. Results : The PMA-induced $I{\kappa}B$ kinase(IKK), iNOS and COX-2 mRNA expression were dose-dependently decreased in UA treated synoviocytes. Using the in vivo test, the number of eosinophils in mice treated with UA noticeably decreased in the the CIA group(P<0.05 using student t test). In mice treated with UA, there was less cartilage erosion. less bone destruction, mild synovial hyperplasia, mild fibrosis, and mild angiogenesis with less MIP-2 production. By immunohistochemical staining, suppression of $NF-{\kappa}B$ p65, iNOS production, inhibition of COX-2 production, inhibition of VCAM-1 production and inducing apoptosis were observed. Conclusions : These results suggest that UA might be applicable to the therapy of RA to suppress $NF-{\kappa}B$ activation.

  • PDF

Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

  • Shu, Yusheng;Liu, Yu;Li, Xinxin;Cao, Ling;Yuan, Xiaolong;Li, Wenhui;Cao, Qianqian
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.132-139
    • /
    • 2016
  • The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor ${\beta}1$ (TGF-${\beta}1$) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (AT-RvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-${\beta}1$-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-${\beta}1$ reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory ${\kappa}B$ kinase 16 (IKK 16), which is known to inhibit the NF-${\kappa}B$ pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-${\beta}1$-induced EndMT, but it had no effect on TGF-${\beta}1$-induced EndMT alone. Smad7, which is a key regulator of TGF-${\beta}$/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-${\beta}1$-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

Anticancer Effects of Thymoquinone, Caffeic Acid Phenethyl Ester and Resveratrol on A549 Non-small Cell Lung Cancer Cells Exposed to Benzo(a)pyrene

  • Ulasli, Sevinc Sarinc;Celik, Sefa;Gunay, Ersin;Ozdemir, Mehmet;Hazman, Omer;Ozyurek, Arzu;Koyuncu, Tulay;Unlu, Mehmet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.6159-6164
    • /
    • 2013
  • Background: Phytochemical compounds are emerging as a new generation of anticancer agents with limited toxicity in cancer patients. The purpose of this study was to investigate the potential effcts of thymoquinone, caffeic acid phenylester (CAPE) and resveratrol on inflammatory markers, oxidative stress parameters, mRNA expression levels of proteins and survival of lung cancer cells in Vitro. Materials and Methods: The A549 cell line was treated with benzo(a)pyrene, benzo(a)pyrene plus caffeic acid phenylester (CAPE), benzo(a)pyrene plus resveratrol (RES), and benzo(a)pyrene plus thymoquinone (TQ). Inflammatory markers, oxidative stress parameters, mRNA expression levels of apoptotic and anti-apoptotic proteins and cell viability were assessed and results were compared among study groups. Results: TQ treatment up-regulated Bax and down-regulated Bcl2 proteins and increased the Bax/Bcl2 ratio. CAPE and TQ also up-regulated Bax expression. RES and TQ down-regulated the expression of Bcl-2. All three agents decreased the expression of cyclin D and increased the expression of p21. However, the most significant up-regulation of p21 expression was observed in TQ treated cells. CAPE, RES and TQ up-regulated TRAIL receptor 1 and 2 expression. RES and TQ down-regulated the expression of NF-kappa B and IKK1. Viability of CAPE, RES and TQ treated cells was found to be significantly decreased when compared with the control group (p=0.004). Conclusions: Our results revealed up-regulation of the key upstream signaling factors, which ultimately cause increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis. Overall these results provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ, RES and CAPE.

Dehydrocostus lactone inhibits NFATc1 via regulation of IKK, JNK, and Nrf2, thereby attenuating osteoclastogenesis

  • Lee, Hye In;Lee, Gong-Rak;Lee, Jiae;Kim, Narae;Kwon, Minjeong;Kim, Hyun Jin;Kim, Nam Young;Park, Jin Ha;Jeong, Woojin
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.218-222
    • /
    • 2020
  • Excessive and hyperactive osteoclast activity causes bone diseases such as osteoporosis and periodontitis. Thus, the regulation of osteoclast differentiation has clinical implications. We recently reported that dehydrocostus lactone (DL) inhibits osteoclast differentiation by regulating a nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), but the underlying mechanism remains to be elucidated. Here we demonstrated that DL inhibits NFATc1 by regulating nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and nuclear factor-erythroid 2-related factor 2 (Nrf2). DL attenuated IκBα phosphorylation and p65 nuclear translocation as well as decreased the expression of NF-κB target genes and c-Fos. It also inhibited c-Jun N-terminal kinase (JNK) but not p38 or extracellular signal-regulated kinase. The reporter assay revealed that DL inhibits NF-κB and AP-1 activation. In addition, DL reduced reactive oxygen species either by scavenging them or by activating Nrf2. The DL inhibition of NFATc1 expression and osteoclast differentiation was less effective in Nrf2-deficient cells. Collectively, these results suggest that DL regulates NFATc1 by inhibiting NF-κB and AP-1 via down-regulation of IκB kinase and JNK as well as by activating Nrf2, and thereby attenuates osteoclast differentiation.

Indomethacin으로 유발된 생쥐의 위점막 손상에 대한 평위산(平胃散), 이진탕(二陳湯) 및 평진탕(平陳湯)의 비교연구 (A Comparative Study of Pyeongwi-san, Ijin-tang and Pyeongjintang Extracts on Indomethacin-Induced Gastric Mucosal Lesions in Mice)

  • 지현철;백태현
    • 대한한의학회지
    • /
    • 제32권2호
    • /
    • pp.102-117
    • /
    • 2011
  • Objectives: This study was performed to investigate the protective and treating efficacy of Pyeongwi-san, Ijin-tang, and Pyeongjin-tang extracts to the mice with gastric mucosal lesions induced from indomethacin. Methods: In order to verify protective and treating efficacy of Pyeongwi-san, Ijin-tang, and Pyeongjin-tang extracts to the mice with gastric mucosal lesions induced from indomethacin, I administered the extracts of these prescriptions to three group, and induced gastric mucosal lesion by indomethacin, and then I observed the gastric mucosal morphology of stomach, changes from stress resulting from HSP70, changes of gastro-protection (mucous barrier, COX-1). After I observed the anti-oxidant effect, and anti-inflammation effect (IKK mRNA, iNOS mRNA, COX-2 mRNA) in vitro, I induced gastric mucosal lesion by indomethacin, and administered the extracts of each prescriptions to three group, and then I observed the gastric mucosal morphology, anti-inflammation effect to mucosa (NF-${\kappa}$B, iNOS, COX-2) in vivo. Results & Conclusions: 1. Hemorrhagic erosion and damaged mucus secreting cell, positive responses to HSP70 were decreased in all the before-gastric-mucosal-lesion-induced groups, compared to non-extract administered group. The effects were good in the order of Pyeongwi-san extracts administered group, Pyeongjin-tang extracts administered group and Ijin-tang extracts administered group. 2. In all the before-gastric-mucosal-lesion-induced groups, gastro- protection functions (mucous barrier, COX-1) were significant. The effects were good in the order of Pyeongwi-san extracts administered group, Pyeongjin-tang extracts administered group and Ijin-tang extracts administered group. 3. Anti-oxidant effect was significant in Pyeongwi-san extracts, Ijin-tang extracts and Pyeongjin-tang extracts. The effects were good in the order of Pyeongjin-tang extracts, Pyeongwi-san extracts and Ijin-tang extracts. 4. The anti-inflammation effects in vitro were good in Pyeongwi-san extracts, Ijin-tang extracts and Pyeongjin-tang extracts. Especially Pyeongjin-tang extracts showed the most prominent results. Damaged mucus secreting cells and the positive reactions of NF-${\kappa}$B, iNOS, COX-2 in vivo were decreased in after-gastric-mucosal-lesion-induced groups compared to non-extract administered group. The effects were good in the order of Pyeongjin-tang extracts administered group, Pyeongwi-san extracts administered group and Ijin-tang extracts administered group. These results show that Pyeongwi-san, Ijin-tang and Pyeongjin-tang are effective on both in protecting and treating the gastric mucosal membrane. Pyeongwi-san is more effective than other prescriptions, in protecting gastric mucosal membrane, and Pyeongjin-tang is more effective in treating gastric mucosal lesion.

6-Shogaol의 Toll-like receptor 2, 3, 4 agonists에 의해서 유도된 cyclooxygenase-2 발현 억제 (Suppression of the Expression of Cyclooxygenase-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists by 6-Shogaol)

  • 김점지;안상일;이전수;윤새미;이미영;윤형선
    • 한국식품과학회지
    • /
    • 제40권3호
    • /
    • pp.332-336
    • /
    • 2008
  • 선천성 면역은 병원성균의 침입에 대항하기 위한 숙주의 최초 방어체계라 할 수 있다. 이러한 선천성 면역반응은 병원균들이 가지고 있는 독특한 구조를 인식하는 TLRs에 의해서 조절되어 진다고 알려져 있다. 숙주에 침입한 여러 병원성균들이 TLRs를 자극하며 이렇게 자극된 신호들은 아래로 전달되어 전사요소 $NF-{\kappa}B$의 활성화를 유도하고 결국 COX-2와 같은 염증 유발인자를 유도하여 암이나 질병을 유발하게 된다. 우리는 이번 연구를 통하여 생강 추출물중의 하나인 6-shogaol이 어떻게 $NF-{\kappa}B$ 활성화나 COX-2 발현을 조절하여 항염증 효과를 가지고 있는지를 알아보았다. 6-shogaol은 TLR2, TLR3, TLR4 agonists에 의해서 유도된 $NF-{\kappa}B$ 활성화와 COX-2 발현을 억제하였다. 이러한 결과는6-shogaol이 여러 병원균들로부터 유도되는 염증반응이나 만성적인 질병들을 조절할 수 있다는 중요한 결과를 보여주는 것이라 할 수 있다.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.