• Title/Summary/Keyword: IGS 상시관측소

Search Result 16, Processing Time 0.019 seconds

DCB 적용 한반도 전리층 격자 모델 개발

  • Lee, Chang-Mun;Kim, Ji-Hye;Park, Gwan-Dong
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.22.2-22.2
    • /
    • 2011
  • 이 연구에서는 한반도 상공의 전리층 총전자수를 격자 형태로 나타냈다. 이를 위해 국토해양부 GPS 상시관측소에서 제공 중인 코드와 위상 측정값을 선형조합하였으며 그 결과물을 이용하여 시선방향 총전자수를 산출하였다. 이때 전리층 총전자수 산출결과의 정확도를 향상시키기 위해 가중최소자승법을 이용하여 위성과 수신기의 하드웨어 오차인 DCB(Differencial Code Bias)를 추정하였으며 추정된 DCB값은 IGS에서 제공 중인 DCB값과 비교하여 정확도를 확인하였다. 산출된 시선방향 총전자수를 연직방향 총전자수로 변환하기 위해 사상함수를 적용하였으며, 이를 다시 각 격자점에서의 연직방향 총전자수로 변환하기 위해 기존 연직방향 총전자수에 역거리 가중 보간법을 적용하였다. 각 격자점에서의 총전자수는 IGS(International GNSS Service)에서 제공 중인 GIM(Global Ionosphere Map) 모델의 총전자수와 비교하여 정확도를 확인하였다. 산출된 총전자수는 2시간 간격으로 나타내어 한반도 상공 전리층 총전자수의 변화 경향을 확인하였다.

  • PDF

AN ANALYSIS OF THE EFFECT ON THE DATA PROCESSING OF KOREA GPS NETWORK BY THE ABSOLUTE PHASE CENTER VARIATIONS OF GPS ANTENNA (절대 위상중심변화 적용이 국내 GPS 망 자료처리에 미치는 영향분석)

  • Baek, Jeong-Ho;Lim, Hyung-Chul;Jo, Jung-Hyun;Cho, Sung-Ki;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.385-396
    • /
    • 2006
  • The International GNSS Service (IGS) has prepared for a transition from the relative phase conte. variation (PCV) to the absolute PCV, because the terrestrial scale problem of the absolute PCV was resolved by estimating the PCV of the GPS satellites. Thus, the GPS data will be processed by using the absolute PCV which will be an IGS standard model in the near future. It is necessary to compare and analyze the results between the relative PCV and the absolute PCV for the establishment of the reliable processing strategy. This research analyzes the effect caused by the absolute PCV via the GPS network data processing. First, the four IGS stations, Daejeon, Suwon, Beijing and Wuhan, are selected to make longer baselines than 1000km, and processed by using the relative PCV and the absolute PCV to examine the effect of the antenna raydome. Beijing and Wuhan stations of which the length of baselines are longer than 1000km show the average difference of 1.33cm in the vertical component, and 2.97cm when the antenna raydomes are considered. Second, the 7 permanent GPS stations among the total 9 stations, operated by Korea Astronomy and Space Science Institute, are processed by applying the relative PCV and the absolute PCV, and their results are compared and analyzed. An insignificant effect of the absolute PCV is shown in Korea regional network with the average difference of 0.12cm in the vertical component.

Accuracy Analysis of Online GPS Data Processing Service (온라인 GPS 자료처리 서비스의 정확도분석)

  • Kong, Joon-Mook;Park, Joon-Kyu;Lee, Choi-Gu;Lee, Young-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Currently, GPS data process software appears different results that according to user's skills or software. Also, lots of time and efforts are necessary for using GPS data process software to general user, not a specialist On the other band, on-line GPS data process service have a merit that can cony out GPS data process without technical efforts and time. In this study, permanent GPS site's observation data of NGII(National Geographic Information Institute) was processed by on-line GPS data process service, and utilization assessment of on-line GPS data process service was performed by comparing this result with notified coordinates by the NGII in order to analyze positional accuracy. 10 permanent GPS sites of NGII including Suwon which is registered in IGS(International GNSS Service) were selected and these GPS observation data was processed by AUSPOS and CSRS-PPP.

A Study on the Introduction of GPS Virtual Reference System in South Korea (GPS 가상기준점 도입에 관한 연구)

  • 최윤수;이용창;권재현;이재원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.105-116
    • /
    • 2004
  • According to the developing advanced techniques and removal of Selective Availability, much research has been conducted to improve the accuracy of GPS positioning in absolute and relative mode by estimating the nuisance parameters such as atmospheric effect, clock errors and multipath. Especially, the continuous effort of establishing the CORS in many countries and the effort of ICS making effective global networking make more application areas and the necessity of more precise location is being increased. Some of the countries like German, Japan and Swiss already utilized the Virtual Reference System for better location accuracy and services. In this study, the VRS system is investigated in terms of system principle, required H/W and S/W, management and operation, revision of related law, expected application and market etc. and find optimal solution in each aspect for economic and fast set up of the system in this country. The analysis of Korean CORS, communication infra and market estimation is performed for the efficient system establishment. Also. the suggestion on the advertisement and education of the system is also included. It is expected that this study contributes for the establishment of effective and precise nationwide location service so that many SOC areas including navigation, GIS, Telematics, LBS can provides better service for the users.

Crustal Deformation Velocities Estimated from GPS and Comparison of Plate Motion Models (GPS로 추정한 지각변동 속도 및 판 거동 모델과의 비교)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.877-884
    • /
    • 2006
  • GPS is an essential tool for applications that be required high positioning precision, for the velocity field estimation of tectonic plates. The three years data of eight GPS permanent station were analyzed to estimate crustal deformation velocities using Gipsy-oasis II software. The velocity vectors of GPS stations are estimated by linear regression method in daily solution time series. The velocities have a standard deviation of less than 0.1mm/yr and the magnitude of velocities given by the Korean GPS permanent stations were very small, ranging from 25.1 to 31.1 mm/yr. The comparison between the final solution and other sources, such as IGS velocity result calculated from SOPAC was accomplished and the results generally show good agreement for magnitude and direction in crustal motion. To evaluate the accuracy of our results, the velocities obtained from six plate motion model was compared with the final solution based on GPS observation.

Surface deformation monitoring of Augustine volcano, Alaska using GPS measurement - A case study of the 2006 eruption - (GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 - 2006년 분화를 중심으로 -)

  • Kim, Su-Kyung;Hwang, Eui-Hong;Kim, Young-Hwa;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2013
  • Augustine is an active stratovolcano located in southwest of Cook Inlet, about 290 kilometers southwest of Anchorage, Alaska. Between January 11 and 28, 2006, the volcano erupted explosively 14 times. We collected twelve permanent GPS stations operating by Plate Boundary Observatory (PBO) from 2005 to 2011. All data processing was carried out using Bernese GPS Software V5.0 with IGS precise orbit. Static baseline processing by fixing AC59 station was applied for the volcano activity monitoring. AC59 is the nearest (about 24.5 km) station to Augustine volcano, and located on North America Plate including Augustine Island. The test results show inflation (9.7 cm/yr) and deflation (-9.2 cm/yr) of volcano before and after eruption around crater clearly. After volcano activity has reached a plateau, some of the GPS stations installed north of the volcano show ground subsidence phenomenon caused by compaction of pyroclastic flows. These results indicate the possibility of using surface deformation observed by GPS for monitoring and prediction of volcano activity.