• Title/Summary/Keyword: IGCT

Search Result 27, Processing Time 0.027 seconds

Magnetic Design of Flyback Type Snubber for IGCT Applications

  • Shirmohammadi, Siamak;Lama, Amreena;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.367-368
    • /
    • 2016
  • 10kV IGCT has been recently developed and has the potential to push wind turbine systems to higher power and voltage rating. Converters employing IGCTs need snubber and OVP circuit to limit the rate of current's rising and peak over voltage across IGCT during turn on and off state, respectively. The conventional RCD snubber which is used in such power converter dissipates a significant amount of power. In order to reduce the amount of energy lost by conventional RCD snubber, this paper proposes flyback type snubber comprising two coils wound on a magnetic core. The flyback snubber not only meets all of the IGCTs characteristics during on and off-state but also significantly saves the power loss. Modern magnetic model using permeance-capacitance analogy leads to more accurate loss analysis of flyback type di/dt snubber circuit in 3-level NPC type back-to-back VSC. In turns, the comparison between conventional and flyback type snubber yield the effectiveness of proposed snubber in wind turbine systems.

  • PDF

Flyback type Snubber Circuit with di/dt Limiting Capability for IGCT in MV Wind Turbines

  • Lee, Kihyun;Song, Seunghoo;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.333-334
    • /
    • 2014
  • Converters employing IGCTs usually require di/dt snubber and Over Voltage Protection (OVP) circuit for the protection of IGCTs and fast diodes. In these IGCT-based converters, conventional di/dt snubber and OVP circuit dissipates a significant amount of power loss. To reduce this loss of conventional di/dt snubber and OVP circuit, this paper proposes a flyback type snubber circuit with di/dt limiting characteristic for IGCT-based converters in medium voltage wind turbines. This flyback type snubber circuit simply consists of a flyback type transformer and diode. The proposed circuit reduces loss and simplifies conventional di/dt snubber by adopting the flyback type transformer. Loss analysis of conventional di/dt snubber and OVP circuit is performed for the 3-level NPC type back-to-back VSC supplied from grid voltage of 6.9kV. The proposed flyback type snubber circuit can save the loss of conventional snubber circuit in the 3L-NPC type back-to-back VSC in multi-MW MV wind turbine. The proposed snubber circuit has a fewer number of components and improved efficiency leading to a reliable and efficient wind turbine systems.

  • PDF

A Study on High Current Rectifier Systems with Mitigated Time-Varying Magnetic Field Generation

  • Kim, Chang-Woo;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.232-233
    • /
    • 2010
  • This paper investigates occupational exposure to time-varying magnetic field generation in high power rectifier systems. Two different kinds of high power rectifier systems of 25kA are modeled and analyzed. The performance is compared and evaluated on the basis of exposure guidelines from ICNIRP. In order to focus on the qualitative effect of rectifier operation, the mechanical structure of current carrying conductors is simplified as infinite long bus-bar model and low frequency harmonic contents up to 65kHz are considered. Thyristor rectifier generates a significant amount of low frequency magnetic field harmonic contents both at ac and dc side of rectifier infringing the limit from ICNIRP. The multilevel rectifier-IGCT type has almost negligible field generation from ac input side and smaller harmonic contents in dc load side complying with ICNIRP guideline. This remarkable advantage of multilevel rectifier-IGCT type can lead to very simple site layout design for installation and cost-effective compliance to guideline of occupational exposure against magnetic field.

  • PDF

Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbines

  • Lee, Kihyun;Jung, Kyungsub;Suh, Yongsug;Kim, Changwoo;Cha, Taemin;Yoo, Hyoyol;Park, Sunsoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.386-387
    • /
    • 2013
  • This paper provides a comparison of high power semiconductor devices in 5MW-class Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) wind turbines. High power semiconductor devices of IGBT module type, IGBT press-pack type, and IGCT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on neutral-point clamed 3-level back-to-back type voltage source converter supplied from grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through the loss analysis considering both conduction and switching losses under the given operating conditions of 5MW-class PMSG wind turbines, particularly for the application in offshore wind farms. The loss analysis is confirmed through PLECS simulations. The comparison result shows that IGBT press-pack type semiconductor device has the highest efficiency and IGCT has the lowest cost factor considering the necessary auxiliary components.

  • PDF

Characteristics of High Power Semiconductor Device Losses in 5MW class PMSG MV Wind Turbines

  • Kwon, Gookmin;Lee, Kihyun;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.367-368
    • /
    • 2014
  • This paper investigates characteristics of high power semiconductor device losses in 5MW-class Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) wind turbines. High power semiconductor device of press-pack type IGCT of 6.5kV is considered in this paper. Analysis is performed based on neutral point clamped (NPC) 3-level back-to-back type voltage source converter (VSC) supplied from grid voltage of 4160V. This paper describes total loss distribution at worst case under inverter and rectifier operating mode for the power semiconductor switches. The loss analysis is confirmed through PLECS simulations. In addition, the loss factors due to di/dt snubber and ac input filter are presented. The investigation result shows that IGCT type semiconductor devices generate the total efficiency of 97.74% under the rated condition.

  • PDF

Loss Analysis and Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbine Systems

  • Lee, Kihyun;Suh, Yongsug;Kang, Yongcheol
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1380-1391
    • /
    • 2015
  • This paper provides a loss analysis and comparison of high power semiconductor devices in 5MW Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbine Systems (WTSs). High power semiconductor devices of the press-pack type IGCT, module type IGBT, press-pack type IGBT, and press-pack type IEGT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on the back-to-back type 3-level Neutral Point Clamped Voltage Source Converters (3L-NPC VSCs) supplied from a grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through a loss analysis considering both the conduction and switching losses under the operating conditions of 5MW PMSG wind turbines, particularly for application in offshore wind farms. This paper investigates the loss analysis and thermal performance of 5MW 3L-NPC wind power inverters under the operating conditions of various power factors. The loss analysis and thermal analysis are confirmed through PLECS Blockset simulations with Matlab Simulink. The comparison results show that the press-pack type IGCT has the highest efficiency including the snubber loss factor.

Comparative performance evaluation of 10kV IGCTs in 3L NPC and ANPC Converter in PMSG MV Wind Turbines (PMSG 풍력발전기용 3L NPC와 ANPC 컨버터에서의 10kV IGCT 성능 비교 평가)

  • Lyngdoh, Amreena Lama;Suh, Youngsug;Park, Byoung-Gun;Kim, Jiwon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.86-88
    • /
    • 2018
  • The three level(3L) neutral point clamped (NPC) voltage source converter (VSC) topology is widely used for grid interface in high power wind energy due to its superior performance as compared to the two level(2L) VS. However, one of the major drawbacks of this topology is the unequal dispersion of loss and therefore the junction temperature among the power devices. The 3L ANPC topology derived from the NPC topology was proposed to resolve this drawback of unequal loss profile of 3L NPC. The 3L ANPC can work under various switching strategies. In this paper a comparative study of the various switching strategies of 3L ANPC using the recently developed 10kV IGCTs which has the capability to raise the current and voltage rating of the wind turbines is carried out. The comparison is performed using ABB make 10kV IGCT 5SHY17L9000 and PLECs simulations.

  • PDF

The Parallel Operation of Single Phase PWM Rectifier using IGBT (IGBT를 이용한 단산 PWM정류기 병렬운전)

  • 이현원;장성영;김연준;이광주;김남해
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.122-125
    • /
    • 1999
  • The AC-to-DC single-phase PWM rectifier for traction applications using high power semiconductor, IGCT is made and tested. Parallel operation of two PWM converter is adopted for increasing capacity of converters. For reducing harmonics, the harmonic content is eliminated by the phase shift between two converters switching phase. The output voltage control is achieved by interns calculation without detecting the input current. The part of PLL used for controlling power factor is simply implemented by software.

  • PDF

Current Source Type Induction Heating System for Unity Power Factor (단위역률을 위한 전류형 유도가열 시스템)

  • Lim, S.K.;Kim, S.R.;Kim, K.H.;Park, S.J.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.220-221
    • /
    • 2010
  • 최근 IGBT를 비롯한 IGCT, SCR, MOSFET 등 전력용 반도체의 눈부신 발전으로 인해 전력용 반도체 소자를 이용한 고주파 영역의 스위칭을 요구하는 시스템의 연구가 활발하게 이루어지고 있다. 따라서 본 논문에서는 단위역률을 이룰 수 있는 전류형 인버터를 이용한 유도가열 시스템에 대해 연구하였으며 제안된 방식의 타당성을 위해 시뮬레이션 및 실험을 행하였다.

  • PDF

A Novel Design for High Voltage RC-GCTs (고전압 GCT(Gate Commutated Thyristor) 소자 설계)

  • Zhang, C.L.;Kim, S.C.;Kim, E.D.;Kim, H.W.;Seo, K.S.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.312-315
    • /
    • 2003
  • Basic design of RC-GCTs (Reserve-Conducting Gate-Commutated Thyristors) by novel punch-through (PT) concept with 5,500v rated voltage is described here. A PT and NPT (non punch-through) concept for the same blocking voltage has been compared in detail. The simulation work indicates that GCT with such PT design exhibits that the forward breakdown voltage is 6,400V which is enough for supporting 5500V blocking. Additionally, the real IGCT turn-off in the mode of PNP transistor has been realized. However, the carrier extraction from N-base to gate terminal will be drastic slowly in terms of NPT structure except for the high on-state voltage drop.

  • PDF