• Title/Summary/Keyword: IGCC(Integrated Gasification Combined Cycle)

Search Result 110, Processing Time 0.024 seconds

Properties of quasi-noncombustible ultra-lightweight geopolymer (준불연 초경량 지오폴리머의 물성)

  • Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.132-139
    • /
    • 2019
  • EPS (expanded polystyrene) is one of the most used building materials for insulation that is favored by its excellent heat insulation, economical efficiency and lightweight characteristics. However, EPS is vulnerable to the fire and producing large amount of toxic gases in case of fire. Therefore, ultra-lightweight geopolymer which can replace EPS is fabricated by using IGCC (integrated gasification combined cycle) fused slag and Si sludge as raw materials and the possibility of replacement on ultra-lightweight geopolymer for EPS as an insulation building material was evaluated in this study. Ultra-lightweight geopolymer can be fabricated with the pulverized IGCC fused slag having low carbon content and density, compressive strength, thermal conductivity were $0.064g/cm^3$, 0.04 MPa, and 0.072 W/mK, respectively. The thermal conductivity of ultra-lightweight geopolymer is 1.5~2.0 times higher than that of EPS suggested in the KS M 3808; however, the thermal conductivity value of geopolymer is meaningful and competitive to that of EPS in the market. Therefore, ultralightweight geopolymer can be applicable to the building material for thermal insulation purpose and have an enough possibility to replace EPS in the future because it is not only much safer than EPS in case of fire but also it can be fabricate by using waste materials from the industry.

Linear Model Predictive Control of an Entrained-flow Gasifier for an IGCC Power Plant (석탄 가스화 복합 발전 플랜트의 분류층 가스화기 제어를 위한 선형 모델 예측 제어 기법)

  • Lee, Hyojin;Lee, Jay H.
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.592-602
    • /
    • 2014
  • In the Integrated Gasification Combined Cycle (IGCC), the stability of the gasifier has strong influences on the rest of the plant as it supplies the feed to the rest of the power generation system. In order to ensure a safe and stable operation of the entrained-flow gasifier and for protection of the gasifier wall from the high internal temperature, the solid slag layer thickness should be regulated tightly but its control is hampered by the lack of on-line measurement for it. In this study, a previously published dynamic simulation model of a Shell-type gasifier is reproduced and two different linear model predictive control strategies are simulated and compared for multivariable control of the entrained-flow gasifier. The first approach is to control a measured secondary variable as a surrogate to the unmeasured slag thickness. The control results of this approach depended strongly on the unmeasured disturbance type. In other words, the slag thickness could not be controlled tightly for a certain type of unmeasured disturbance. The second approach is to estimate the unmeasured slag thickness through the Kalman filter and to use the estimate to predict and control the slag thickness directly. Using the second approach, the slag thickness could be controlled well regardless of the type of unmeasured disturbances.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

A Study on Reaction Characteristics of Fe$_2$O$_3$High-Temperature Desulfurization Sorbents (Fe$_2$O$_3$계 고온건식탈황제의 반응특성 연구)

  • Kang, Suk-Hwan;Rhee, Young-Woo;Kang, Yong;Han, Keun-Hee;Yi, Chang-Keun;Jin, Gyoung-Tae;Son, Jae-Ek;Park, Yeong-Seong
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1996
  • Reduction, sulfidation, and regeneration reactions were performed using domestic and Australian iron ore in order to develop a desulfurizing sorbent for the high temperature desulfurization process that is one of major processes in the integrated coal gasification combined cycle (IGCC) system. A TGA (Thermogravimetric Analysis) reactor and a fixed-bed reactor were used. Some basic kinetic information was obtained from BET surface area measurements, SEM photos, cyclic reactions, reaction temperature changes and TGA curves of the sorbents. The rates of both desulfurization and regeneration increased with increasing reaction temperature in the range of 500-700$^{\circ}C$.

  • PDF

Preparation and Reactivity of ZnO-Al$_2$O$_3$ Desulfurization Sorbents for Removal H$_2$S ($H_2S$제거를 위한 ZnO-$Al_2O_3$ 탈황제의 제조 및 반응특성 연구)

  • 박노국;이종욱;류시옥;이태진;김재창
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.136-141
    • /
    • 2002
  • Advanced zinc-based sorbents, ZA, for Hot Gas Desulfurization (HGD) process in Integrated Gasification Combined Cycle (IGCC) systems were formulated with $Al_2$O$_3$ as support to enhance the reactivity and their reactive characteristics was also investigated in this study. Changes in the physical and chemical properties of the sorbents based on both the mole ratios of ZnO/Al$_2$O$_3$ and the calcination temperatures were examined by a XRD. The results obtained in our desulfurization-regeneration cycle tests demonstrated that degradation of sorbents due to the heat generation could be improved through the optimization of the $Al_2$O$_3$ contents and of the calcination temperatures. From the durability study it is concluded that the prepared ZA sorbents with additives have the desirable features for HGD.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성)

  • Lee, Min Chul;Joo, Seong Pil;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.632-638
    • /
    • 2013
  • This paper describes on the flame stability and combustion instability of coal derived synthetic gas especially for gases of Buggenum IGCC in Netherlands and Taean IGCC in Korea. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Flame stability map is plotted according to the flame structure by dividing all regimes into six, and only regime I and II are identified to be stable. Both syngases of Taean and Buggenum with nitrogen integration corresponds to regime II in which syngas burnt stably and flame coupled with outer recirculation flow. Stable regime of Buggenum is larger than that of Taean when considering only $H_2$/CO ratio due to higher content of hydrogen. However, when considering nitrogen dilution, syngas of Taean is burnt more stably than that of Buggenum since more nitrogen in Buggenum has negative effect on the stability of flame.

Solid $CO_2$ sorbents and WGS catalyst for pre-combustion $CO_2$ capture (연소전 $CO_2$ 회수를 위한 고체 흡수제 및 WGS 촉매 특성 평가)

  • Eom, Tae Hyoung;Lee, Joong Beom;Park, Keun Woo;Choi, Dong Hyuk;Baek, Jeom-In;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • 석탄가스화복합발전(IGCC: Integrated Gasification Combined Cycle)의 고온 고압 합성가스로부터 $CO_2$를 저비용으로 포집하기 위한 연소전 포집 기술 중 유동층 촉진수성가스전환(SEWGS) 공정이 제안되어 연구개발 중에 있다. 연소전 $CO_2$ 포집을 위한 SEWGS 공정은 동일한 2탑 순환 유동층 반응기에서 고온 고압의 합성가스($H_2$, CO)를 유동층 WGS 촉매를 사용하여 CO를 $CO_2$로 전환하는 동시에 전환반응으로 생성된 $CO_2$를 흡수제를 이용하여 포집하는 기술이다. 본 연구는 $CO_2$ 회수와 WGS 반응이 동시에 이루어지는 공정에 적용 가능한 건식 재생 흡수제 및 유동층 WGS 촉매 개발을 목표로 $CO_2$ 흡수제(P Series) 및 WGS 촉매(PC Series) 조성을 제안하고 분무건조기를 이용하여 6~8kg/batch로 성형 제조하였다. 제조된 $CO_2$ 흡수제 및 촉매의 특성 평가 결과 내마모도(Attrition resistance)를 포함한 물리적 특성이 유동층 공정의 요구조건을 만족하는 결과를 얻을 수 있었다. 또한, 모사 석탄 합성가스를 이용하여 20bar, $200^{\circ}C$ 흡수/$400^{\circ}C$ 재생 조건에서 열중량 분석기(TGA) 및 가압 유동층(Fluidized-bed) 반응기를 통한 흡수제의 $CO_2$ 흡수능 평가를 수행하였다. 그 결과 내마모도(AI) 3% 이하로 기계적 강도가 우수하며, $CO_2$ 흡수능 17.6 wt%(TGA) 및 11wt%(가압 유동층)를 나타냈다. 유동층 WGS 특성 평가 결과 내마모도가 7~35%로 우수하였고, CO 전환율은 $200^{\circ}C$에서 80% 이상으로, 유동층 SEWGS 공정에 적용 가능한 특성을 확인하였다.

  • PDF

Performance Evaluation of IGCC Plants with Variation in Coal Rank and Coal Feeding System (탄종 및 석탄공급방식 변화에 따른 석탄가스화 복합발전 플랜트의 성능 평가)

  • 이승종;이진욱;윤용승
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.176-187
    • /
    • 1997
  • As a way to evaluate the performance of IGCC (Integrated Gasification Combined Cycle) processes, heating values of coal gas as well as plant efficiency were compared for different rank coals and coal feeding methods by employing the static process simulation technique. Performance of the process was compared with coal rank that was varied by three assorted bituminous coals and also by three subbituminous coals, in addition to the two types of feeding techniques, i.e., dry-feeding and slurry-feeding, that are utilized in entrained-bed coal gasifiers. For the verification of the simulation technique, simulated results were compared first with the actual pilot plant data published from Shell and Texaco. The simulation technique was, then, applied to other coals. Result from tests varying coal rank exhibits the trend of improving both heating content of the product gas and plant efficiency with increasing carbon content in coal. The effect of coal rank is more sensitive in slurry-feeding cases compared to the dry-feeding cases. In particular, considering notably lower values in gas heating value and plant efficiency calculated in the slurry-feeding case that uses a subbituminous coal, limited utilization of the slurry-feeding method for subbituminous coals can be expected. From the plant efficiency point of view, dry-feeding method resulted in higher simulated efficiency values by maximum 3% for subbituminous coals and ca. l% for bituminous coals.

  • PDF

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF

The Adsorption of COS with a Modified-Activated Carbon for Ultra-Cleanup of Coal Gas (석탄가스의 초정밀 정제를 위한 변형된 활성탄의 흡착특성 연구)

  • Lee, You-Jin;Park, No-Kuk;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • The adsorption properties of the activated carbon-based adsorbents were studied to remove COS emitted from $SO_2$ catalytic reduction process on the integrated gasification combined cycle (IGCC) system in this work. Transition metal supported catalysts and mixed metal oxide catalysts were used for the $SO_2$ catalytic reduction. The mechanism of COS produced from the $SO_2$ reduction and the COS concentration s according to the reaction temperature were investigated. In this study, an activated carbon and a modified activated carbon doped with KOH were used to remove the very low concentration of COS effectively. The adsorption rate and the breakthrough time of COS were measured by a thermo gravity analyzer (TGA, Cahn Balance) and a fixed bed flow reactor equipped with GC-pulsed flammable photometric detector (PFPD), respectively. It was confirmed that the COS breakthrough time of the activated carbon doped with KOH was longer than that of an activated carbon. In conclusion, the modified-activated carbon having a high surface area showed a high adsorption rate of COS produced from the $SO_2$ reduction.

  • PDF