• 제목/요약/키워드: IFN-stimulated genes (ISGs)

검색결과 4건 처리시간 0.018초

Interferon Tau in the Ovine Uterus

  • Song, Gwon-Hwa;Han, Jae-Yong;Spencer, Thomas E.;Bazer, Fuller W.
    • Journal of Animal Science and Technology
    • /
    • 제51권6호
    • /
    • pp.471-484
    • /
    • 2009
  • The peri-implantation period in mammals is critical with respect to survival of the conceptus (embryo/fetus and associated extraembryonic membranes) and establishment of pregnancy. During this period of pregnancy, reciprocal communication between ovary, conceptus, and endometrium is required for successful implantation and placentation. At this time, interferon tau (IFNT) is synthesized and secreted by the mononuclear trophectodermal cells of the conceptus between days 10 and 21~25. The actions of IFNT to signal pregnancy recognition and induce or increase expression of IFNT-stimulated genes (ISGs), such as ISG15 and OAS, are mediated by the Type I IFN signal transduction pathway. This article reviews the history, signaling pathways of IFNT and the uterine expression of several IFNT-stimulated genes during the peri-implantation period. Collectively, these newly identified genes are believed to be critical to unraveling the mechanism(s) of reciprocal fetal-maternal interactions required for successful implantation and pregnancy.

Regulation of Interferon-stimulated Gene (ISG)12, ISG15, and MX1 and MX2 by Conceptus Interferons (IFNTs) in Bovine Uterine Epithelial Cells

  • Kim, Min-Su;Min, Kwan-Sik;Imakawa, Kazuhiko
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.795-803
    • /
    • 2013
  • Various endometrial genes in ruminant ungulates are regulated by conceptus interferon tau (IFNT). However, the effect of each IFNT isoform has not been carefully evaluated. In this study, the effects of 2 IFNT isoforms, paralogs found in utero, and interferon alpha (IFNA) on uterine epithelial and Mardin-Darby bovine kidney (MDBK) cells were evaluated. Expression vectors of the bovine interferon (bIFNT) genes bIFNT1, bIFNTc1, and bIFNA were constructed, and recombinant bIFNs (rbIFNs) were produced by 293 cells. Bovine uterine epithelial or MDBK cells were cultured in the presence or absence of increasing concentrations of each rbIFN for 24, 48, or 72 h. Transcript levels of the IFN-stimulated genes (ISGs) ISG12, ISG15, MX1, and MX2 were analyzed using quantitative reverse transcription-polymerase chain reaction. These messenger RNAs were up-regulated by rbIFN in a time- and concentration-dependent manner. In the epithelial cells, the ISG12 transcript level increased at 48 h after rbIFN treatment but slightly decreased at 72 h, whereas the transcript level of ISG15 increased at 24 h and was maintained through 72 h. Expressions of MX1 and MX2 increased at 72 h after rbIFN treatment. MX1 expression increased in all treatment groups, but MX2 increased only by bIFNTc1. In MDBK cells, the expression of ISG12 was increased by bIFNT1 and bIFNTc1 after 24 and 72 h; however, it was unchanged by rbIFNA. ISG15 increased following the same pattern as that seen in uterine epithelial cells, and MX1 showed a similar expression pattern. MX2 expression was increased by bIFNTc1 treatment in uterine epithelial cells, and its expression was increased by both bIFNT1 and bIFNTc1 in MDBK cells. These results show that epithelial and MDBK cell responses to IFNs differ, suggesting that IFNs possess common functions, but may have acquired different functions following gene duplication.

Expression Analysis of Interferon-Stimulated Gene 15 in the Rock Bream Oplegnathus fasciatus against Rock Bream Iridovirus (RSIV) Challenge

  • Kim, Kyung-Hee;Yang, In Jung;Kim, Woo-Jin;Park, Choul-Ji;Park, Jong-Won;Noh, Gyeong Eon;Lee, Seunghyung;Lee, Young Mee;Hwang, Hyung Kyu;Kim, Hyun Chul
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권4호
    • /
    • pp.371-378
    • /
    • 2017
  • Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.

Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells

  • Liu, Yong-Shi;Liu, Qiong;Jiang, Yan-Long;Yang, Wen-Tao;Huang, Hai-Bin;Shi, Chun-Wei;Yang, Gui-Lian;Wang, Chun-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.515-525
    • /
    • 2020
  • Interferon (IFN)-λ plays an essential role in mucosal cells which exhibit strong antiviral activity. Lactobacillus plantarum (L. plantarum) has substantial application potential in the food and medical industries because of its probiotic properties. Alphacoronaviruses, especially porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), cause high morbidity and mortality in piglets resulting in economic loss. Co-infection by these two viruses is becoming increasingly frequent. Therefore, it is particularly important to develop a new drug to prevent diarrhea infected with mixed viruses in piglets. In this study, we first constructed an anchored expression vector with CWA (C-terminal cell wall anchor) on L. plantarum. Second, we constructed two recombinant L. plantarum strains that anchored IFN-λ3 via pgsA (N-terminal transmembrane anchor) and CWA. Third, we demonstrated that both recombinant strains possess strong antiviral effects against coronavirus infection in the intestinal porcine epithelial cell line J2 (IPEC-J2). However, recombinant L. plantarum with the CWA anchor exhibited a more powerful antiviral effect than recombinant L. plantarum with pgsA. Consistent with this finding, Lb.plantarum-pSIP-409-IFN-λ3-CWA enhanced the expression levels of IFN-stimulated genes (ISGs) (ISG15, OASL, and Mx1) in IPEC-J2 cells more than did recombinant Lb.plantarum-pSIP-409-pgsA'-IFN-λ3. Our study verifies that recombinant L. plantarum inhibits PEDV and TGEV infection in IPEC-J2 cells, which may offer great potential for use as a novel oral antiviral agent in therapeutic applications for combating porcine epidemic diarrhea and transmissible gastroenteritis. This study is the first to show that recombinant L. plantarum suppresses PEDV and TGEV infection of IPEC-J2 cells.