• Title/Summary/Keyword: IFN-${\tau}$

Search Result 10, Processing Time 0.039 seconds

Influence of Interferon-${\tau}$ on the Production of Prostaglandins, Cyclooxygenase-2 Expression In Vitro and Release of Progesterone in Bovine Endometrial Cells

  • Lee, Ji-Eun;Lee, Yong-Seung;Yoo, Han-Jun;Lee, Kyoung-Jin;Park, Joung-Jun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.27 no.4
    • /
    • pp.245-252
    • /
    • 2012
  • The purpose of the present study was to investigate the effect of IFN-${\tau}$ on prostaglandin synthesis, cyclooxygenase-2 (COX-2) gene expression in vitro and concentration of progesterone (P4) in endometrial cells. Epithelial and stromal cells cultured in vitro were isolated from bovine endometrium and stimulated with increasing doses of IFN-${\tau}$ (0, 0.02, 0.2 and 2 ug/ml). Human chorionic gonadotropin (hCG, 1.5 IU/ml) was used as a positive control. Prostaglandin $E_2$ and $F_{2{\alpha}}$ levels in the culture media were analyzed by enzyme immunoassays and total RNA was extracted from the cells for RT-PCR. P4 concentrations of blood samples were assayed by chemiluminescent immuno assays system. In epithelial cells, COX-2 gene expression was increased in the presence of IFN-${\tau}$ (p<0.05), but it was not significantly different in all groups of stromal cells except for 2 ug/ml IFN-${\tau}$ group (p<0.05). Although IFN-${\tau}$ did not affect $PGE_2$ and $PGF_{2{\alpha}}$ production in epithelial cells, it decreased $PGE_2$ and $PGF_{2{\alpha}}$ production significantly in stromal cells (p<0.05). In vivo experiment, blood concentration of P4 was significantly increased after addition of IFN-${\tau}$ (1 ug/ml). The results indicate that PG production was mediated by COX-2 expression in stromal cells but it was not affected in epithelial cells and this suggest that treatment of IFN-${\tau}$ could improve the implantation environment of uterine by maintenance of high P4 concentration.

Effect of Interferon Supplementation on the Motility of Frozen-thawed Spermatozoa and the Pregnancy Rate after Artificial Insemination in Bovine (소에서 Interferon이 동결-융해 정자의 운동성과 인공 수정 임신율에 미치는 효과)

  • Kim, So-Seob;Park, Yong-Soo
    • Journal of Embryo Transfer
    • /
    • v.28 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • The increase in the meat quality and milk production of cows, which breed Korean Native Cow (KNC) and Holstein cow, is not improving reproductive efficiency. In this study, we examined the effect of interferon (IFN) supplementation on motility of frozen-thawed semen and pregnancy rate after artificial insemination of KNC and Holstein cow. In experiment 1, we investigated the effect of IFN-tau concentration (10,000 IU and 20,000 IU) on the percentage of total motility (TM) and progressive motility (PM) of frozen-thawed spermatozoa. In experiment 2, KNC were infused 20,000 IU IFN-tau at insemination or after insemination. In experiment 3, KNC or Holstein cow were inseminated with frozen-thawed semen and infused 20,000 IU IFN-gamma or -tau after insemination. In experiment 1, the average of TM (23.9% to 30.9%) and PM (18.5% to 21.9%) were similar between control and treatments. In experiment 2, the pregnancy rates of IFN infusing times were not different from 45.8% to 53.6%. In experiment 3, the pregnancy rates of Holstein cow infused different kinds of IFN were similar (control, IFN-gamma, IFN-tau; 42.9%, 40.5%, 48.0%). In the case of KNC, however, the pregnancy rate of control was 55.6%, which was significantly lower than that of IFN-gamma (68.9%; p<0.05). Thus, IFN is effective on the improvement of reproductive efficiency, but further study is needed.

Impaired Functions of Lymphocytes on Nitric Oxide Production in Endotoxin- Tolerant Mice (내독소내성 마우스에서 Nitric Oxide 생성에 미치는 림프구 부전)

  • Gil, Young-Gi;Kang, Mi-Kyung
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1471-1478
    • /
    • 2008
  • In this study, nitric oxide (NO) production in a macrophage-lymphocyte co-culture system was used to assess the cytokine producing capability of cells during endotoxin tolerance in mice. Incubation of peritoneal macrophages with interferon-$\tau$ (IFN-$\tau$) in the presence of lipopolysaccharide (LPS) augmented NO synthesis. Exogenous tumor necrosis factor-$\alpha$(TNF-$\alpha$) could also replace LPS for the stimulation of NO production. Macrophages co-cultured with splenic lymphocytes showed augmented NO synthesis by LPS alone. However, pretreatment of mice with 2.5 mg/kg LPS completely prevented the lethality and the increase of blood TNF-$\alpha$ and IFN-$\tau$ after the second challenge with a lethal dose of LPS. In addition, when macrophages prepared from LPS-tolerant mice were co-cultured with normal splenocytes, LPS also could not induce the production of NO, even in the presence of exogenous TNF-$\alpha$. Moreover, when normal macrophages were co-cultured with splenocytes obtained from LPS-tolerant mice, stimulation with LPS could not evoke the NO production enhancement. However, this down-regulation was able to reverse by exogenous IFN-$\tau$ or concanavalin A (ConA), a stimulator of IFN-$\tau$ production. Our results indicate that not only macrophages but also lymphocytes contribute to LPS tolerance. As INF-$\tau$ can enhance the expression of TNF-$\alpha$, the decrease of INF-$\tau$synthesis from lymphocytes may orchestrate with the decrease of TNF-$\alpha$ synthesis from LPS-tolerant macrophages for the production of tolerant state and the prevention of excessive inflammation. Therefore, LPS tolerance may be exploited for prophylaxis of severe sepsis in patients at risk.

Pregnancy Recognition Signaling for Establishment and Maintenance of Pregnancy

  • Bazer, Fuller W.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.365-369
    • /
    • 1999
  • Interferon tau (IFN$\tau$), the pregnancy recognition signal in ruminants, suppresses transcription of the estrogen receptor (ER) gene in the endometrial luminal (LE) and superficial glandular epithelium (sGE) to prevent oxytocin receptor (OTR) expression and pulsatile release of luteolytic prostaglandin $F_{2{\alpha}}$ (PGF), Interferon regulatory factors one (IRF-l) and two (IRF-2) are transcription factors induced by IFN$\tau$ that activate and silence gene expression, respectively. Available results suggest that IFN$\tau$ acts directly on LE and sGE during pregnancy to induce sequentially IRF-l and then IRF-2 gene expression to silence transcription of ER and OTR genes, block the luteolytic mechanism to maintenance a functional corpus luteum (CL) and, signal maternal recognition of pregnancy. The theory for maternal recognition of pregnancy in pigs is that the uterine endometrium of cyclic gilts secretes PGF in an endocrine direction, toward the uterine vasculature for transport to the CL to exert its luteolytic effect. However, in pregnant pigs, estrogens secreted by the conceptuses are responsible, perhaps in concert with effects of prolactin and calcium, for exocrine secretion of PGF into the uterine lumen where it is sequestered to exert biological effects and / or be metabolized to prevent luteolysis.

  • PDF

Differential Expression of Interferon-Tau Transcripts in Bovine Blastocysts Produced by In Vitro Fertilization and Somatic Cell Nuclear Transfer

  • Song, Bong-Suk;Koo, Deog-Bon;Gabbine Wee;Shim, Jung-Jae;Kim, Ji-Su;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.228-228
    • /
    • 2004
  • Interferon-tau (IFN-τ) is the primary agent responsible for maternal recognition of pregnancy in cattle. Bovine embryos begine to express IFN-τ as the blastocyst forms. Pregnancy recognition in ruminants occurs when IFN-τ from the trophoblast prevents the increase of oxytocin receptors, disrupting luteolytic pulses of prostaglandin (PG) F2a by oxytocin. The expression of IFN-τ is strongly associated with the degree of methylation of the CpG islands in promoter region. (omitted)

  • PDF

Differential Gene Expression in the Bovine Transgenic Nuclear Trasnsfer Embryos (소 형질전환 복제란의 유전자 이상발현 규명)

  • Cho, Jong-Ki;Song, Bong-Seok;Yong, Hwan-Yul;Lee, Doo-Soo;Koo, Deok-Bon;Lee, Kyung-Kwang;Shin, Sang-Tae
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.295-299
    • /
    • 2007
  • The detrimental effects of gene transfection on embryo development and the molecular mechanism behind the differential expression of genes related to early embryo development were assessed in the production of transgenic cow embryos through somatic cell nuclear transfer (NT). Parthenogenetic, IVF, and transgenic NT embryos derived from ${\alpha}_1$-antitrypsin transfected ear fibroblast cells was produced. To investigate the molecular mechanism behind lower developmental competence of transgenic NT embryos, the differential mRNA expression of three genes ($IFN-{\tau}$, Oct4, Fgf4) in the 3 types of embryo (Parthenogenetic, IVF, transgenic NT) was examined. RNA was extracted from ten blastocysts derived from 3 types of embryos and reverse-transcripted for synthesis of the first cDNA. The quantification of 3 gene transcripts ($IFN-{\tau}$, Oct4, and Fgf4) was carried out in three replicate by quantitative real-time reverse transcriptase PCR. Expression level of $IFN-{\tau}$ mRNA was significantly higher in transgenic NT embryos than parthenogenetic and IVF embryos (P<0.05). However, expression level of Oct4 and Fgf4 of transgenic NT embryos was significantly lower than IVF embryos (P<0.05). Altered levels of these three mRNA transcripts may explain some of the embryonic/fetal/neonatal abnormalities observed in offspring from transgenic NT embryos.

Implantation in Ruminants: Changes in Pre-Implantation, Maternal Recognition of Pregnancy, Control of Attachment and Invasion - Review -

  • Nagaoka, K.;Yamaguchi, H.;Aida, H.;Yoshioka, K.;Takahashi, M.;Christenson, R.K.;Imakawa, K.;Sakai, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.845-855
    • /
    • 2000
  • As high as 50% of pregnancies are known to fail and the majority of such losses occur during the peri-implantation period. For the establishment of pregnancy in mammalian species, therefore, implantation of the conceptus to the maternal endometrium must be completed successfully. Physiological events associated with implantation differ among mammals. In ruminant ungulates, an elongation of the trophohlast in early conceptus development is required before the attachment of the conceptus to the uterine endometrium. Moreover, implantation sites are restricted to each uterine caruncula where tissue remodeling, feto-maternal cell fusion and placentation take place in a coordinated manner. These unique events occur under strict conditions and are regulated by numerous factors from the uterine endometrium and trophoblast in a spatial manner. Interferon-tau (IFN-${\tau}$), a conceptus-derived anti-Iuteolytic factor, which rescues corpus luteum from its regression in ruminants, is particularly apt to play an important role as a local regulator in coordination with other factors, such as TGF-${\beta}$, Cox-2 and MMPs at the attachment and placentation sites.

Interferon Tau in the Ovine Uterus

  • Song, Gwon-Hwa;Han, Jae-Yong;Spencer, Thomas E.;Bazer, Fuller W.
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.471-484
    • /
    • 2009
  • The peri-implantation period in mammals is critical with respect to survival of the conceptus (embryo/fetus and associated extraembryonic membranes) and establishment of pregnancy. During this period of pregnancy, reciprocal communication between ovary, conceptus, and endometrium is required for successful implantation and placentation. At this time, interferon tau (IFNT) is synthesized and secreted by the mononuclear trophectodermal cells of the conceptus between days 10 and 21~25. The actions of IFNT to signal pregnancy recognition and induce or increase expression of IFNT-stimulated genes (ISGs), such as ISG15 and OAS, are mediated by the Type I IFN signal transduction pathway. This article reviews the history, signaling pathways of IFNT and the uterine expression of several IFNT-stimulated genes during the peri-implantation period. Collectively, these newly identified genes are believed to be critical to unraveling the mechanism(s) of reciprocal fetal-maternal interactions required for successful implantation and pregnancy.

Regulation of Interferon-stimulated Gene (ISG)12, ISG15, and MX1 and MX2 by Conceptus Interferons (IFNTs) in Bovine Uterine Epithelial Cells

  • Kim, Min-Su;Min, Kwan-Sik;Imakawa, Kazuhiko
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.795-803
    • /
    • 2013
  • Various endometrial genes in ruminant ungulates are regulated by conceptus interferon tau (IFNT). However, the effect of each IFNT isoform has not been carefully evaluated. In this study, the effects of 2 IFNT isoforms, paralogs found in utero, and interferon alpha (IFNA) on uterine epithelial and Mardin-Darby bovine kidney (MDBK) cells were evaluated. Expression vectors of the bovine interferon (bIFNT) genes bIFNT1, bIFNTc1, and bIFNA were constructed, and recombinant bIFNs (rbIFNs) were produced by 293 cells. Bovine uterine epithelial or MDBK cells were cultured in the presence or absence of increasing concentrations of each rbIFN for 24, 48, or 72 h. Transcript levels of the IFN-stimulated genes (ISGs) ISG12, ISG15, MX1, and MX2 were analyzed using quantitative reverse transcription-polymerase chain reaction. These messenger RNAs were up-regulated by rbIFN in a time- and concentration-dependent manner. In the epithelial cells, the ISG12 transcript level increased at 48 h after rbIFN treatment but slightly decreased at 72 h, whereas the transcript level of ISG15 increased at 24 h and was maintained through 72 h. Expressions of MX1 and MX2 increased at 72 h after rbIFN treatment. MX1 expression increased in all treatment groups, but MX2 increased only by bIFNTc1. In MDBK cells, the expression of ISG12 was increased by bIFNT1 and bIFNTc1 after 24 and 72 h; however, it was unchanged by rbIFNA. ISG15 increased following the same pattern as that seen in uterine epithelial cells, and MX1 showed a similar expression pattern. MX2 expression was increased by bIFNTc1 treatment in uterine epithelial cells, and its expression was increased by both bIFNT1 and bIFNTc1 in MDBK cells. These results show that epithelial and MDBK cell responses to IFNs differ, suggesting that IFNs possess common functions, but may have acquired different functions following gene duplication.

Characterizations of the bovine subtype Interferon-tau Genes : Sequences of Genes and Biological Activity of Transcription Factors in JEG3 Cell

  • Kim, Min-Su;Min, Kwan-Sik;Seong, Hwan-Hoo;Kim, Chan-Lan;Kim, Dongkyo;Imakawa, Kazuhiko;Kim, Sung Woo
    • Journal of Embryo Transfer
    • /
    • v.31 no.4
    • /
    • pp.335-347
    • /
    • 2016
  • Multiple interferon tau (IFNT) genes exist in bovine. An antiluteolytic substance secreted by the bovine conceptus and primarily responsible for maternal recognition of pregnancy is bovine trophoblast protein 1 (bIFNT1), a new type I interferon tau (IFNT) genes. The objectives of this research were to investigate whether multiple, distinct gene encode bIFNT1 and other type I bIFNT gene in the bovine genome and to examine expression of bIFNT1 and other bIFNTc1 mRNAs during conceptus development. These transcrips could be regulated through caudal-related homeobox-2 (CDX2) and ETS2 and/or AP1 (JUN) expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. The presence of mRNAs encoded by bIFNT1 and type I bIFNTc1 genes were examined quantitatively via reverse transcription-polymerase chain reaction (RT-PCR) analysis of total cellular RNA (tcRNA) extracted from on day 17, 20 and 22 bovine conceptuses. The expression level of bIFNT1 was higher on day 17 transcripts were gradually weakly detectable on day 20 and 22. However, the other bIFNTc1 gene examined transcripts was highly expressed on day 20 and transcripts were weakly detectable on day 17 and 22 bovine conceptuses. Furthermore, human choriocarcinoma JEG3 was co-transfected with an -1kb-bIFNT1/c1-Luc constructs and several transcription factor expression plasmids. Compared to each -1kb-bIFNT1/c1-Luc increased when this constructs were co-transfected with, ETS2, AP1(JUN), CREBBP and/or CDX2. Also, bIFNTc1 gene was had very effect on activity by alone ETS2, and AP1 (JUN) expression factors in choriocarcinoma JEG3 cell. However, bIFNT1 gene expression of the upstream region was not identified. We demonstrated that the activities of bIFN genes are regulated by differential, tissue-specific and developmental competence during pregnancy.