• Title/Summary/Keyword: IEEE802.11a

Search Result 1,111, Processing Time 0.025 seconds

Fast Handoff based on Radio Resource Measurement in Home Network System (무선자원 측정 정보를 이용한 홈 네트워크 AP간 빠른 핸드오프 방식)

  • Kwon, Soo-Kun;Jeong, Yeon-Joon;Paik, Eei-Hyun;Park, Kang-Roh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.943-946
    • /
    • 2005
  • As a proposed standard for radio resource measurement, 802.11k aims to provide key client feedback to WLAN access points and switches. The proposed standard defines a series of measurement requests and reports that detail Layer 1 and Layer 2 client statistics. In this paper, we analyze handoff processing time, radio specrum usage and handoff coverage using this scheme in home-network inter APs handoff.

  • PDF

Throughput analysis of DCF protocol for packet applied to the nonmarkov process in the wireless LAN (비 마르코프 과정을 적용한 무선 LAN의 DCF 패킷 처리율 분석)

  • Ha, Eun-Sil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1410-1418
    • /
    • 2007
  • This paper analyzes the throughput of DCF protocol at the MAC layer in the 802.11a wireless LAN. The throughput of DCF protocol is related on probability of backoff, depends on retransmission of each terminal. This paper applied to nonmarcov discrete model for each terminal BER in the base station versus the packet throughput is progressing with the data rate of 6,12,24,54 Mbps, We find the fact that the less the data rate be the higher the throughput. We also find from the throughput calculation by means of traffic intensity in OFDM wireless LAN.

  • PDF

A Media Access Control for Spatial Reuse in Wireless Ad hoc Networks (무선 Ad hoc 네트워크에서의 공간재이용을 위한 매체접근제어프로토콜)

  • Qingxian, Pu;Hwang, Won-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.627-635
    • /
    • 2008
  • Using directional antenna in wireless network can offer many advantages including significant decrease of interference, increase of spatial reuse and possibility of improving network capacity. However, existing 802.11 MAC is designed for use of omni-directional antenna then those advantages can not be shown in that MAC protocol when it uses directional antenna. In this paper, we present a MAC protocol specifically designed for directional antenna to achieve spatial reuse and improve capacity of MAC protocol. Simulation result shows the advantages of our proposal in comparison with existing MAC in terms of end-to-end delay and network throughput.

Interaction Between TCP and MAC-layer to Improve TCP Flow Performance over WLANs (유무선랜 환경에서 TCP Flow의 성능향상을 위한 MAC 계층과 TCP 계층의 연동기법)

  • Kim, Jae-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • In recent years, the needs for WLANs(Wireless Local Area Networks) technology which can access to Internet anywhere have been dramatically increased particularly in SOHO(Small Office Home Office) and Hot Spot. However, unlike wired networks, there are some unique characteristics of wireless networks. These characteristics include the burst packet losses due to unreliable wireless channel. Note that burst packet losses, which occur when the distance between the wireless station and the AP(Access Point) increase or when obstacles move temporarily between the station and AP, are very frequent in 802.11 networks. Conversely, due to burst packet losses, the performance of 802.11 networks are not always as sufficient as the current application require, particularly when they use TCP at the transport layer. The high packet loss rate over wireless links can trigger unnecessary execution of TCP congestion control algorithm, resulting in performance degradation. In order to overcome the limitations of WLANs environment, MAC-layer LDA(Loss Differentiation Algorithm)has been proposed. MAC-layer LDA prevents TCP's timeout by increasing CRD(Consecutive Retry Duration) higher than burst packet loss duration. However, in the wireless channel with high packet loss rate, MAC-layer LDA does not work well because of two reason: (a) If the CRD is lower than burst packet loss duration due to the limited increase of retry limit, end-to-end performance is degraded. (b) energy of mobile device and bandwidth utilization in the wireless link are wasted unnecessarily by Reducing the drainage speed of the network buffer due to the increase of CRD. In this paper, we propose a new retransmission module based on Cross-layer approach, called BLD(Burst Loss Detection) module, to solve the limitation of previous link layer retransmission schemes. BLD module's algorithm is retransmission mechanism at IEEE 802.11 networks and performs retransmission based on the interaction between retransmission mechanisms of the MAC layer and TCP. From the simulation by using ns-2(Network Simulator), we could see more improved TCP throughput and energy efficiency with the proposed scheme than previous mechanisms.

A Reservation-based HWMP Routing Protocol Design Supporting E2E Bandwidth in TICN Combat Wireless Network (TICN 전투무선망에서의 종단간 대역폭을 보장하는 예약 기반 HWMP 라우팅 프로토콜 설계)

  • Jung, Whoi Jin;Min, Seok Hong;Kim, Bong Gyu;Choi, Hyung Suk;Lee, Jong Sung;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.160-168
    • /
    • 2013
  • In tactical environment, tactical wireless networks are generally comprised of Tactical MANETs(T-MANETs) or Tactical WMNs(T-WMNs). The most important services in tactical network are voice and low rate data such as command control and situation awareness. These data should be forwarded via multi-hop in tactical wireless networks. Urgent and mission-critical data should be protected in this environment, so QoS(Quality of Service) must be guaranteed for specific type of traffic for satisfying the requirement of a user. In IEEE 802.11s, TDMA-based MAC protocol, MCCA(MCF Controlled Channel Access), has a function of resource reservation. But 802.11s protocol can not guarantee the end-to-end QoS, because it only supports reservation with neighbors. In this paper, we propose the routing protocol, R-HWMP(Reservation-based HWMP) which has the resource reservation to support the end-to-end QoS. The proposed protocol can reserve the channel slots and find optimal path in T-WMNs. We analyzed the performance of the proposed protocol and showed that end-to-end QoS is guaranteed using NS-2 simulation.

Dual-band Monopole Antenna with Half X-slot for WLAN (절반의 X-슬롯을 가진 무선랜용 이중대역 모노폴 안테나)

  • Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.449-455
    • /
    • 2018
  • For the size reduction, we propose a microstrip-fed monopole antenna with half X-slot in the radiation patch and cover WLAN dual band 2.4 GHz band (2.4 ~ 2.484 GHz) and 5 GHz band (5.15 ~ 5.825 GHz). The frequency characteristics such as impedance bandwidth and resonant frequencies were satisfied by optimizing the numerical values of various parameters, while the reflection loss in 5 GHz was improved by using defected ground structure (DGS). The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of $24{\times}41mm^2$. The measured impedance bandwidths (${\mid}S_{11}{\mid}{\leq}-10dB$) of fabricated antenna are 450 MHz (2.27 ~ 2.72 GHz) in 2.4 GHz band and 1340 MHz (4.79 ~ 6.13 GHz) in 5 GHz band which sufficiently satisfied with the IEEE 802. 11n standard in dual band. In particular, radiation patterns which are stable as well as relatively omni-direction could be obtained, and the gain of antennas in each band was 1.31 and 1.98 dBi respectively.

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.

A MB-OFDM UWB Receive Design and Evaluation Using 4. Parallel Synchronization Architecture (4 병렬 동기 구조를 이용한 MB-OFDM UWB 수신기 설계 및 평가)

  • Shin Cheol-Ho;Choi Sangsung;Lee Hanho;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1075-1085
    • /
    • 2005
  • The purpose of this paper is to design the architecture for synchronization of MB-OFDM UWB system that is being processed the standardization for Alt-PHY of WPAN(Wireless Personal Area Network) at IEEE802.15.3a and to analyze the implementation loss due to 4 parallel synchronization architecture for design or link margin. First an overview of the MB-OFDM UWB system based on IEEE802.15.3a Alt-PHY standard is described. The effects of non-ideal transmission conditions of the MB-OFDM UWB system including carrier frequency offset and sampling clock offset are analyzed to design a full digital architecture for synchronization. The synchronization architecture using 4-parallel structure is then proposed to consider the VLSI implementation including algorithms for carrier frequency offset and sampling clock offset to minimize the effects of synchronization errors. The overall performance degradation due to the proposed synchronization architecture is simulated to be with maximum 3.08 dB of the ideal receiver in maximum carrier frequency offset and sampling clock offset tolerance fir MB-OFDM UWB system.

Design of Wide-Band, High Gain Microstrip Antenna Using Parallel Dual Slot and Taper Type Feedline (평행한 이중 슬롯과 Taper형 급전선로를 이용한 광대역, 고이득 마이크로스트립 안테나의 설계)

  • Lee, Sang-Woo;Lee, Jae-Sung;Kim, Chol-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.257-264
    • /
    • 2007
  • In this paper, we have designed and fabricated a wide-band and high gain antenna which can integrate a standard of IEEE 802.1la$(5.15\sim5.25\;GHz,\;5.25\sim5.35\;GHz,\;5.725\sim5.825\;GHz)$. We inserted a parallel dual slot into a rectangular patch to have wide-band, and we offset an element of capacitance from the slot by using coaxial probe feeding method. We also designed a converter of $\lambda_g/4$ impedance with taper type line so that wide-band impedance can be matched easily. We finally designed structure with $2\times2$ array in order to improve the antenna gain, and the final fabricated antenna could have a good return loss(Return loss$\leq$-10 dB) and a high gain(over 13 dBi) at the range of $5.01\sim5.95\;GHz(B/W\doteqdot940\;MHz)$.

An Integrated QoS Support Architecture for Wireless Home Network Based on IEEE 802.11 Wireless LAN

  • Hong, Sung-Hwa;Kim, Byoung-Kug;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.227-234
    • /
    • 2007
  • In this paper, to support a QoS level appropriate to the user in Wireless Home Network based Wireless LAN, we propose a QoS support architecture which includes Wired Network and Wireless Network. Actually, an important problem to support QoS in Wireless Home Network is approached not only on a MAC level in Wireless LAN but also on a integrated method to combine Network layer with Datalink layer. By applying the integrated QoS support method, it is possible to provide QoS support architecture using a Wireless LAN terminal with a minimum changing, and the proposed scheme has advantage of QoS support method, which is more superior than a existing scheme to support QoS in MAC level of Wireless LAN. Simulations results show that overall performance of the proposed scheme can be improved.

  • PDF