• Title/Summary/Keyword: IEEE 802.11e MAC

Search Result 74, Processing Time 0.024 seconds

eMCCA: An Enhanced Mesh Coordinated Channel Access Mechanism for IEEE 802.11s Wireless Mesh Networks

  • Islam, Md. Shariful;Alam, Muhammad Mahbub;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.639-654
    • /
    • 2011
  • In this paper, we present a channel access mechanism, referred to as the enhanced mesh coordinated channel access (eMCCA) mechanism, for IEEE 802.11s-based wireless mesh networks. The current draft of IEEE 802.11s includes an optional medium access control (MAC), denoted as MCCA, which is designed to provide collision-free and guaranteed channel access during reserved periods. However, the MCCA mechanism fails to achieve the desired goal in the presence of contending non-MCCA nodes; this is because non-MCCA nodes are not aware of MCCA reservations and have equal access opportunities during reserved periods. We first present a probabilistic analysis that reveals the extent to which the performance of MCCA may be affected by contending non-MCCA nodes. We then propose eMCCA, which allows MCCA-enabled nodes to enjoy collision-free and guaranteed channel access during reserved periods by means of prioritized and preemptive access mechanisms. Finally, we evaluate the performance of eMCCA through extensive simulations under different network scenarios. The simulation results indicate that eMCCA outperforms other mechanisms in terms of success rate, network throughput, end-to-end delay, packet-loss rate, and mesh coordinated channel access opportunity-utilization.

Maximizing Differentiated Throughput in IEEE 802.11e Wireless LANs (IEEE 802.11e 무선LAN의 차별화된 성능강화기법)

  • Yoon, Jong-Won;Yun, Sang-Ki;Kim, Hyo-Gon;Ko, Jeong-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.34-39
    • /
    • 2006
  • IEEE 802.11e 무선LAN 매체접근제어(MAC) 통신규약의 분산조정함수(DCF)의 성능은 경쟁노드수가 증가할수록 급격히 떨어진다. 이러한 문제점을 해결하기 위해서 채널의 유휴슬롯시간(Idle Time)을 측정해서 최소 경쟁윈도($CW_{min}$)를 조절하는 방식이 제시되었다. 이러한 방식을 각 부류별로 서비스 품질이 보장되는 IEEE 802.11e 네트워크로 확장하여 성능을 최대화하는 기법을 이 논문에서 다루겠다. 각 부류별로 서비스품질은 유지하면서 네트워크 전체의 성능을 높일 수 있는 최적의 경쟁윈도 크기를 찾아내는 기법을 보이도록 하겠다.

  • PDF

An Efficient Scheduling Scheme based on Fuzzy Prediction for IEEE 802.11e WLAN (IEEE 802.11e WLAN을 위한 효율적인 퍼지 예측 기반 스케줄링 방법)

  • Heo, Jong-Man;Lee, Kam-Rok;Kim, Nam-Hun;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1045-1046
    • /
    • 2006
  • The IEEE 802.11e medium access control (MAC) is an emerging standard to support Quality of Service (QoS). A HCCA (HCF controlled channel access) scheduler of the standard IEEE 802.11e is only efficient for flows with strict constant bit rate (CBR) characteristics. In this paper, we propose a new HCCA scheduling scheme that aims to be efficient for both CBR and VBR flows. The proposed scheme uses fuzzy queue length predictions to tune its time allocation to stations. We present a set of simulations and provide performance comparisons with the reference HCCA scheduler.

  • PDF

Design and Performance Analysis of RSRR Scheduling Algorithm for Enhancing Performance of IEEE 802.11s MCCA (IEEE 802.11s MCCA 의 성능 향상을 위한 RSRR 스케쥴링 알고리즘 설계 및 성능 분석)

  • Kim, Bong Gyu;Jung, Whoi Jin;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.22-33
    • /
    • 2014
  • As a standard of WMNs, IEEE 802.11s supports two kinds of MAC algorithm: a mandatory EDCA used by IEEE 802.11e and an optional MCCA. While EDCA classifies traffic according to four Access Categories (AC) and offer differentiated service using a classified priority, MCCA can guarantee the specific bandwidth of users with a TDMA-style bandwidth reservation scheme between mesh routers. In case that a flow is VBR traffic of a multimedia application, MCCA has disadvantage that the reserved bandwidth does not be used entirely, though it guarantees required bandwidth of users and fairness using bandwidth reservation with neighbors' node. In this paper, we showed a problem that is wastes the reserved bandwidth when MCCA is enabled and proposed a new scheduling algorithm to prevent waste of bandwidth and to improve network utilization effectively, named Resource Sharing Round Robin (RSRR) scheduling. Finally we showed simulation results that performance of a proposed RSRR is better than the legacy MCCA through NS-2 simulation.

IEEE 802.11 MAC based Multi-hop Reservation and Backoff Scheme in MIMC Tactical Ad Hoc Networks (전술 애드 혹 네트워크에서 다중 홉 전송을 위한 자원 예약 및 백오프 기법)

  • Cho, Youn-Chul;Yoon, Sun-Joong;Ko, Young-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2012
  • In multi-interface multi-channel(MIMC) based tactical ad hoc networks, QoS support for required operational capacity is one of the main challenging issues for multi-hop transmissions. To support QoS in such a harsh environment, we propose a novel MAC scheme to minimize multi-hop as well as per-hop delay. The current IEEE 802.11 MAC protocols should contend to reserve the channel resource at every hop by each sender. The every-hop channel contention results in a degradation of end-to-end delay for multi-hop transmissions. The basic idea of our scheme is to make a "multi-hop reservation" at the MAC layer by using the modified RTS frame. It contains additional information such as destination information, packet priority, and hop count, etc. In addition, we differentiate the contention window area according to the packet priority and the number of hops to deliver packets in the predefined allowed latency. Our scheme can minimize the multi-hop delay and support the QoS of the critical data in real time(i.e., VoIP, sensing video data, Video conference between commanders). Our simulation study and numerical analysis show that the proposed scheme outperforms the IEEE 802.11 MAC.

Performance Measurement of IEEE 802.11p based Communication Systems in Large Capacity Transmission (IEEE 802.11p 기반 통신시스템의 대용량 전송 성능 측정)

  • Cho, Woong;Choi, Hyun-Kyung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1359-1364
    • /
    • 2014
  • IEEE 802.11p is a representative PHY/MAC layer standard in vehicular communications. The performance of IEEE 802.11p based communication systems has been measured in various criterions such as link setup time, error rate, and throughput for the case of one-to-one. In this paper, we measure the performance of IEEE 802.11p based communication systems in large capacity transmission. The performance of large capacity transmission is measured by considering the maximum 32 simultaneous transmission including one-to-one transmission. We consider two transmission schemes, i.e., broadcasting and unicasting, and the performance is represented as the receiving rate and throughput.

Performance Analysis and evaluation of the IEEE 802.11e EDCF (IEEE 802.11e EDCF 성능 분석과 평가)

  • Kim Jong Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1356-1366
    • /
    • 2004
  • Recently, the IEEE 802.11 working group has announced a new distributed MAC called EDCF to provide service differentiation among traffic classes. With the increasing demand for supporting Quality of Service in IEEE 802.11 wireless LANs, the EDCF is now attracting many researchers' attention due to its practical worth as a standard mechanism. In this paper, we focus on the analytical approach to evaluate the performance of the EDCF. An analytical model is developed to estimate the throughput of the EDCF in saturation (asymptotic) conditions. Extensive simulation studies have been carried out for the validation of the analysis, and they show that it estimates the throughput of the EDCF accurately By utilizing the analytical model, we evaluate the performance of the EDCF. Specifically, we concentrate on discovering the characteristics of the EDCF Parameters, such as CW/Sub min/, CW/Sub max/ and AIFS, in the way that they influence on the performance of the EDCF.

A MAC Parameter Optimization Scheme for IEEE 802.11e-based Multimedia Networks (IEEE 802.11e 기반 멀티미디어 네트워크를 위한 MAC 매개 변수 최적화 방법)

  • Sung, Min-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.455-461
    • /
    • 2008
  • Enhanced Distributed Channel Access (EDCA) is a channel access scheme adopted by the IEEE 802.11e draft standard for QoS-enabled wireless local area networks. It classifies traffic into separate Access Categories (ACs) and achieves service differentiation by allowing each AC to have its own values of channel access parameters. This paper proposes a scheme to dynamically adapt the EDCA parameters to traffic environment so that they both maximize the throughput of non real-time traffics and meet the delay and throughput constraints of real-time traffics. For this purpose, we develop a design algorithm for efficient exploration of the EDCA parameter space. Using the algorithm, we derive a Pareto curve fur delay-throughput trade-off in each anticipated traffic environment. The Pareto database can then be used to optimally adjust the parameter according to the traffic environment and administrative policies. Simulation results show that compared with the default parameter configuration, the proposed scheme is better for delay, throughput guarantee and can improve the throughput of non real-time traffics by 12% on average.

A Priority-based MAC Protocol to Support QoS in Ad-hoc Networks (애드 혹 네트워크 QoS 지원을 위한 우선순위 기반 MAC 프로토콜)

  • Wang, Weidong;Seo, Chang-Keun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.80-89
    • /
    • 2005
  • In IEEE 802.11 and 802.11e for ad hoc networks, DCF and EDCA use a contention-based protocol called CSMA/CA, which is simple to implement efficient when the system is light loaded. But the performance of CSMA/CA decreases dramatically when the system load is heavy because of increasing collisions. In PCF and HCF modes, stations are controlled by a base station by polling, no collision ever occurs. However, when the system load is light, the performance is poor because few stations have data to transfer. More important, PCF and HCF can not be used in the ad hoc networks. In this paper, we address a priority-based distributed polling mechanism (PDPM) that implements polling scheme into DCF or EDCA modes for ad hoc networks by adding a polling approach before every contention-based procedure. PDPM takes the advantages of polling mechanism that avoids most of collisions in a high load condition. At the same time, it also keeps the contention-based mechanism for a light loaded condition. PDPM provides quality of service (QoS) with fewer collisions and higher throughput compared with IEEE 802.11e.