• Title/Summary/Keyword: IEEE 802.11 WLANs

Search Result 86, Processing Time 0.021 seconds

The Modified Backoff Algorithm to reduce the number of collisions in the IEEE 802.11 Networks

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.228-232
    • /
    • 2008
  • In recent years, wireless ad hoc networks have become increasingly popular in both military and civilian applications due to their capability of building networks without the need for a pre-existing infrastructure. Recently, IEEE 802.11 Task Group e has been working on a new mechanism, the Enhanced Distributed Coordination Function (EDCF), to enhance the performance of 802.11 DCF. However, EDCF only reduces the internal collisions within a station, and external collisions between stations remain high in ad-hoc networks. In this paper, we propose to adopt an adaptive backoff window control technique, based on a dynamic value of the initial value of the range in which the backoff is chosen, so the backoff timer is randomly chosen in the range (InitRng, CW-1). We use ns-2 simulation to evaluate the throughput of our scheme. Results show that the throughput is improved for our scheme compared to the original DCF due to the reduced the number of collisions.

Implementation of Access Point Selection Policy for Congestion Relief in IEEE 802.11 WLANs (혼잡분산을 고려한 IEEE 802.11 Access Point 선택정책)

  • Lee, Kwang-Gyo;Choi, Chang-Yeol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.1096-1099
    • /
    • 2007
  • 무선LAN 환경에서는 대체로 AP(Access Point)의 신호세기 만으로 사용할 AP를 선택하므로, 모바일 노드 사용이 한 영역으로 집중되면 특정 AP에 혼잡이 초래되어 전체 네트워크의 사용 효율이 저하된다. 본 논문에서는 각 AP의 부하 정보를 이용해 핫스팟의 혼잡을 분산시키고 AP의 데이터 전송속도를 최대한 보장하는 AP 선택 정책을 제안하고 이를 응용하는 시스템을 구현하였다. 실측 데이터를 적용하여 시험한 결과, AP의 혼잡이 분산되고 네트워크 사용 효율이 기존 방식보다 우수함을 확인하였다.

  • PDF

A Novel Idle Mode Operation in IEEE 802.11 WLANs: Prototype Implementation and Performance Evaluation (IEEE 802.11 WLAN을 위한 Idle Mode Operation: Prototype 구현 및 성능 측정)

  • Jin, Sung-Geun;Han, Kwang-Hun;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.152-161
    • /
    • 2007
  • IEEE 802.11 Wireless Local Area Network (WLAN) became a prevailing technology for the broadband wireless Internet access, and new applications such as Voice over WLAM (VoWLAN) are fast emerging today. For the battery-powered VoWLAN devices, the standby time extension is a key concern for the market acceptance while today's 802.11 is not optimized for such an operation. In this paper, we propose a novel Idle Mode operation, which comprises paging, idle handoff, and delayed handoff. Under the idle mode operation, a Mobile Host (MH) does not need to perform a handoff within a predefined Paging Area (PA). Only when the MH enters a new PA, an idle handoff is performed with a minimum level of signaling. Due to the absence of such an idle mode operation, both IP paging and Power Saving Mode (PSM) have been considered the alternatives so far even though they are not efficient approaches. We implement our proposed scheme in order to prove the feasibility. The implemented prototype demonstrates that the proposed scheme outperforms the legacy alternatives with respect to energy consumption, thus extending the standby time.

Capacity Analysis of Internet Protocol Television (IPTV) over IEEE 802.11ac Wireless Local Area Networks (WLANs)

  • Virdi, Chander Kant;Shah, Zawar;Levula, Andrew;Ullah, Imdad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Internet Protocol Television (IPTV) has emerged as a personal entertainment source for home users. Streaming IPTV content over a wireless medium with good Quality of Service (QoS) can be a challenging task as IPTV content requires more bandwidth and Wireless Local Area Networks (WLANs) are susceptible to packet loss, delay and jitter. This research presents the capacity of IPTV using User Datagram Protocol (UDP) and TCP Friendly Rate Control (TFRC) over IEEE 802.11ac WLANs in good and bad network conditions. Experimental results show that in good network conditions, UDP and TFRC could accommodate a maximum of 78 and 75 Standard Definition Television (SDTV) users, respectively. In contrast, 15 and 11 High-Definition Television (HDTV) users were supported by UDP and TFRC, respectively. Performance of UDP and TFRC was identical in bad network conditions and same number of SDTV and HDTV users were supported by TFRC and UDP. With background Transmission Control Protocol (TCP) traffic, both UDP and TFRC can support nearly the same number of SDTV users. It was found that TFRC can co-exist fairly with TCP by giving more throughput to TCP unlike UDP.

TCP Acknowledgement Compression for Fairness Among Uplink TCP Flows in IEEE 802.11n WLANs (IEEE 802.11n 무선랜에서 상향링크 TCP 플로우간 형평상 향상을 위한 TCP ACK 압축기법)

  • Kim, Minho;Park, Eun-Chan;Kim, Woongsup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.653-660
    • /
    • 2013
  • This paper deals with the problem of unfairness among uplink TCP (Transmission Control Protocol) flows associated with frame aggregation employed in IEEE 802.11n WLANs (Wireless Local Area Networks). When multiple stations have uplink TCP flows and transmit TCP data packets to an AP (Access Point), the AP has to compete for channel access with stations for the transmission of TCP ACK (acknowledgement) packets to the stations. Due to this contention-based channel access, TCP ACKs tend to be accumulated in the AP's downlink buffer. We show that the frame aggregation in the MAC (Medium Access Control) layer increases TCP ACK losses in the AP and leads to the serious unfair operation of TCP congestion control. To resolve this problem, we propose the TAC (TCP ACK Compression) mechanism operating at the top of the AP's interface queue. By exploiting the properties of cumulative TCP ACK and frame aggregation, TAC serves only the representative TCP ACK without serving redundant TCP ACKs. Therefore, TAC reduces queue occupancy and prevents ACK losses due to buffer overflow, which significantly contributes to fairness among uplink TCP flows. Also, TAC enhances the channel efficiency by not transmitting unnecessary TCP ACKs. The simulation results show that TAC tightly assures fairness under various network conditions while increasing the aggregate throughput, compared to the existing schemes.

Virtualizing IEEE 802.11 WLANs for Multiple Simultaneous Experiments (다중 실험 지원을 위한 IEEE 802.11 무선랜의 가상화)

  • Hahm, Seong-Il;Lee, Hee-Jin;Kang, Young-Myoung;Lim, Sang-Soon;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.2
    • /
    • pp.85-93
    • /
    • 2010
  • WLAN virtualization can make multiple simultaneous experiments, each of which is conducted by a separate researcher, share scarce wireless resources in an IEEE 802.11 WLAN. The experiment performed in a virtualized WLAN should be consistent with that in a non-virtualized WLAN. The more similar these two experimental results, the better the consistency. To this end, we propose a novel virtualization scheme that has good consistency by preventing multiple simultaneous experiments from interacting with one another, without any modifications to the IEEE 802.11 standard. Through an intensive simulation study, we confirm that the consistency depends not only on the number of simultaneous experiments but also on wireless channel characteristics such as Doppler frequency and Ricean factor. According to such dependencies, the proposed scheme is optimized, so that it supports good consistency.

Interclass Collision Protection (ICP) Model for IEEE 802.11e Wireless LANs (WLANs)

  • Lee, Chae-Y.;Cho, Woon-Sun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.307-311
    • /
    • 2006
  • Distributed Coordination Function (DCF) in IEEE 802.11 and Enhanced Distributed Channel Access (EDCA) in IEEE 802.11e are contention-based access mechanism in Wireless LAN. Both DCF and EDCA reduce collisions based on inter-frame space (IFS) and backoff mechanisms. However, collisions are unavoidable even with the two mechanisms. Especially, in the EDCA model, the collision can be classified into interclass and intraclass collision. To eliminate interclass collision in Wireless LAN, we propose an interclass collision protection (ICP) scheme by employing contention protection period (CPP) after backoff, Analysis is performed for one dimensional EDCA model and for the proposed ICP based EDCA model.

  • PDF

On the Trade-Off between Throughput Maximization and Energy Consumption Minimization in IEEE 802.11 WLANs

  • Serrano, Pablo;Hollick, Matthias;Banchs, Albert
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.150-157
    • /
    • 2010
  • Understanding and optimizing the energy consumption of wireless devices is critical to maximize the network lifetime and to provide guidelines for the design of new protocols and interfaces. In this work, we first provide an accurate analysis of the energy performance of an IEEE 802.11 WLAN, and then we derive the configuration to optimize it. We further analyze the impact of the energy configuration of the stations on the throughput performance, and we discuss under which circumstances throughput and energy efficiency can be both jointly maximized and where they constitute different challenges. Our findings are that, although an energy-optimized configuration typically yields gains in terms of throughput as compared against the default configuration, it comes with a reduction in performance as compared against the maximum-bandwidth configuration, a reduction that depends on the energy parameters of the wireless interface.

Implementation of Fiber Optic and Wireless Complex Communication Network for Distribution Automation using IEEE 802.11a WLAN technology (IEEE 802.11a WLAN 기술의 사용에 의한 배전자동화용 광무선 복합통신망의 구현)

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.49-57
    • /
    • 2010
  • In order to provide electricity to users economically and safely, distribution automation systems (DASs) monitor and operate components of distribution systems remotely through communication networks. The fiber optic communication network has been mainly installed for the DAS of Korea Electric Power Corporation (KEPCO) because of its huge bandwidth and dielectric noise immunity. However, the fiber optic communication network has some shortcomings that its installation cost and communication fee are expensive. This paper proposes a complex network where WLANs are combined with conventional fiber optic communication networks in order to expand DAS easily and inexpensively. A fixed wireless bridge communication unit (FWB-CU) for the proposed complex network is implemented using IEEE 802.11a WLAN technology. The proposed complex network is built actually to verify its feasibility experimentally as a DAS communication network.

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.