• Title/Summary/Keyword: IEEE 802 15.3

Search Result 278, Processing Time 0.029 seconds

Design of Wide-Band, High Gain Microstrip Antenna Using Parallel Dual Slot and Taper Type Feedline (평행한 이중 슬롯과 Taper형 급전선로를 이용한 광대역, 고이득 마이크로스트립 안테나의 설계)

  • Lee, Sang-Woo;Lee, Jae-Sung;Kim, Chol-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.257-264
    • /
    • 2007
  • In this paper, we have designed and fabricated a wide-band and high gain antenna which can integrate a standard of IEEE 802.1la$(5.15\sim5.25\;GHz,\;5.25\sim5.35\;GHz,\;5.725\sim5.825\;GHz)$. We inserted a parallel dual slot into a rectangular patch to have wide-band, and we offset an element of capacitance from the slot by using coaxial probe feeding method. We also designed a converter of $\lambda_g/4$ impedance with taper type line so that wide-band impedance can be matched easily. We finally designed structure with $2\times2$ array in order to improve the antenna gain, and the final fabricated antenna could have a good return loss(Return loss$\leq$-10 dB) and a high gain(over 13 dBi) at the range of $5.01\sim5.95\;GHz(B/W\doteqdot940\;MHz)$.

Traffic Adaptive Transmission Algorithm for Energy Efficiency in WBAN (WBAN 환경에서 에너지 효율을 고려한 트래픽 적응형 전송 알고리즘)

  • Kim, Jinhyuk;Hong, Changki;Choi, Sangbang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.315-327
    • /
    • 2013
  • Wireless Body Area Network (WBAN) is a network around a human body within 3~5m which consists of medical or non-medical device. WBAN has to satisfy many kinds of demands such as low-power, a variety of data rate and a data priority. Especially, it is hard for the nodes for monitoring vital signs to replace battery. Thus energy and channel efficiency is important because the battery power is limited. In this thesis, a novel algorithm for reducing the energy consumption is proposed. The proposed algorithm adjusts transmission period according to traffic. by means of determining transmission period by amount of data, the node can reduce energy consumption. Energy detection is performed in order to guarantee data priority before attempting to transmit. In case of failing to transmit, it is proposed that energy consumption is reduced through avoiding collision by changing priority. The comparison result shows that the proposed algorithm reduces power consumption and increasing maximum channel efficiency by avoiding collision.

Performance Analysis of UMB Signal Acquisition Algorithms According to Frame Interval and Bin Spacing in indoor Wireless Channels (실내 무선 환경에서 프레임 및 탐색 단위 구간에 따른 UWB 신호 동기 획득 알고리즘의 성능 분석)

  • Oh jong ok;Yang Suck chel;An Yo Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1623-1632
    • /
    • 2004
  • In this paper, we analyze the performance of linear search and bit reversal search algorithms based on the single-dwell serial search for rapid UWB (Ultra Wide Band) signal acquisition in typical indoor wireless channel environments. Simulation results according to bin spacing and frame interval in IEEE 802.15 Task Group 3a UWB indoor wireless channels show that bit reversal search algorithm achieves much smaller normalized mean acquisition time than linear search algorithm. In particular, it is found that the normalized mean acquisition time of the bit reversal search according to the range of searching termination interval closely matches the ideal case. In addition, we observe that the acquisition performance of bit reversal search algorithm becomes much better as bin spacing gets finer.

Energy Efficient Transmission Parameters Selection Method for CSMA/CA based HR-WPAN System under Ship Environment (선박환경에서 CSMA/CA기반 HR-WPAN 시스템의 에너지 효율적 전송파라미터 선택방식분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.760-768
    • /
    • 2009
  • In this paper, we propose the energy efficient transmission parameter selection method for Wireless Personal Area Network (WPAN) system which is applied to e-Navigation system considering various ship models environment. An appropriate selection of transmission parameters of HR-WPAN system is very essential to be considered for saving WPAN devices' energy consumption, when HR-WPAN system is applied to ship area network (SAN). Therefore, we propose an energy consumption model for a ship area network employing IEEE 802.15.3 based CSMA/CA HR-WPAN model and analyze the effect of transmission parameter selection on the performance of energy consumption. In particular, the path loss is the major performance decision parameter for the SAN employing HR-WPAN system, since it varies according to the material of shipbuilding such as steel(for large ship), FRP(for medium size ship) and compound wood(for small ship). Thus, we analyze and demonstrate that the proper transmission parameter selection of transmit power, PHY data rate and fragment size for each ship model could guarantee energy efficiency.

Energy Efficient Transmission Parameters Analysis of TDMA based HR-WPAN System for Ship Environment (선박환경에서 에너지 효율성을 고려한 TDMA기반 고속 WPAN시스템의 전송파라미터 분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.769-775
    • /
    • 2009
  • This paper proposes the optimal transmission parameter selection method for an energy efficient Wireless Personal Area Network (WPAN) system which is applicable to the Maritime Telematics targeting for various ship models. Since the transmission parameter selection is an important factor for WPAN system to decide its energy efficiency, we propose an energy consumption model for ship area network (SAN) employing IEEE 802.15.3 based TDMA HR-WPAN model and analyzes the effect of transmission parameter selection on the performance of energy consumption. In particular, the main performance decision parameter of the SAN applying HR-WPAN is path loss, since it is very varied according to the material of shipbuilding such as steel (large ship), FRP (medium size ship) and compound wood (small ship). Thus, we analyzed and demonstrated that the proper transmission parameter selection among transmit power, PHY data rate and fragment size for each ship model guarantee the energy efficiency.

Power Analysis Attacks on the Stream Cipher Rabbit (스트림 암호 Rabbit에 대한 전력분석 공격)

  • Bae, Ki-Seok;Ahn, Man-Ki;Park, Jea-Hoon;Lee, Hoon-Jae;Moon, Sang-Jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.27-35
    • /
    • 2011
  • Design of Sensor nodes in Wireless Sensor Network(WSN) should be considered some properties as electricity consumption, transmission speed, range, etc., and also be needed the protection against various attacks (e.g., eavesdropping, hacking, leakage of customer's secret data, and denial of services). The stream cipher Rabbit, selected for the final eSTREAM portfolio organized by EU ECRYPT and selected as algorithm in part of ISO/IEC 18033-4 Stream Ciphers on ISO Security Standardization recently, is a high speed stream cipher suitable for WSN. Since the stream cipher Rabbit was evaluated the complexity of side-channel analysis attack as 'Medium' in a theoretical approach, thus the method of power analysis attack to the stream cipher Rabbit and the verification of our method by practical experiments were described in this paper. We implemented the stream cipher Rabbit without countermeasures of power analysis attack on IEEE 802.15.4/ZigBee board with 8-bit RISC AVR microprocessor ATmega128L chip, and performed the experiments of power analysis based on difference of means and template using a Hamming weight model.

Fixed Relays for Next Generation Wireless Systems - System Concept and Performance Evaluation

  • Pabst Ralf;Esseling Norbert;Walke Bernhard H.
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.104-114
    • /
    • 2005
  • This work presents a concept and the related analysis of the traffic performance for a wireless broadband system based on fixed relay stations acting as wireless bridges. The analysis focuses on the important performance indicators end-to-end throughput and delay, taking into account the effects of an automated repeat request protocol. An extension to a MAC frame based access protocol like IEEE 802.11e, 802.15.3, 802.16a, and HIPERLAN2 is outlined and taken as basis for the calculations. The system is intended for both dense populated areas as an overlay to cellular radio systems and to provide wide-area broad-band coverage. The two possible deployment scenarios for both dense urban and wide-area environments are introduced. Analytical and validating simulation results are shown, proving the suitability of the proposed concept for both of the mentioned scenarios. It is established that the fixed relaying concept is well suited to substantially contribute to provide high capacity cellular broad-band radio coverage in next generation (NG) cellular wireless broadband systems.

Selective-Weighted Energy Detector(S-WED) and Synchronization algorithm for IR-UWB systems (IR-UWB 시스템을 위한 선택적 가중치 결합 에너지 검출기(S-WED)와 동기 알고리즘)

  • Ji, Sinae;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.3-9
    • /
    • 2013
  • This paper proposes a selective-weighted energy detection (S-WED) and a synchronization algorithm appropriate for it in IR-UWB system. Energy detectors that are practical in terms of implementation are employed widely for noncoherent reception in IR-UWB systems. However, they show low performance due to using the energy samples captured at symbol rate. For this reason, weighted energy detectors are developed to improve the performance of EDs. Hence, for WED, not only synchronization but also the weight coefficients are needed to be obtained prior to data detection. Meanwhile, the optimal weighting coefficients of WEDs are known to be energy values. Therefore, synchronization and the weighting coefficients can be obtained simultaneously. This paper proposes an S-WED and a simple synchronization algorithm for it in which sub-intervals having energies under a certain level are excluded in energy accumulation resulting in a simpler WED with a bit performance increase in low SNR region. The proposed algorithm is verified through simulations using the preamble symbol and channel models defined in the IEEE 802.15.4a.

A Proposal for Improving Techniques of GTS Utilization Based on WBAN (WBAN 기반의 GTS 채널 이용률 향상기법 제안)

  • Park, Joo-Hee;Jung, Won-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.73-81
    • /
    • 2011
  • The WBAN(Wireless Body Area Network) technology is a short distance wireless network which provides each device's interactive communication by connecting devices inside and outside of body located within 3 meters. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. The The WBAN servides consists of both medical and non-medical applications. The medical application service uses the sensor that transfer the periodic traffic and have different data rates. It uses GTS method to guarantee QoS. In this paper, a new method is proposed, which are suitable design for MAC Protocol. Firstly, MAC frame structure and a primitive based on the WBAN are proposed. Secondly, we proposed the GTS algorithm improved the channel utilization based on the WFQ(Weighted Fair Queuing). The proposed scheduling method is improved channel utilization compared with i-Game(Round Robin scheduling method).

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.