• Title/Summary/Keyword: IDI

Search Result 73, Processing Time 0.024 seconds

The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine(II) (와류실식 소형 디젤기관의 연소실 형상이 기관 성능에 미치는 영향(II))

  • Ra, Jin-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.47-55
    • /
    • 1999
  • A study on swirl chamber for diesel engine is to realize lower fuel consumption and exhaust emission than the current marketing engines. Author formerly reported the performance characteristics of small IDI diesel engine with swirl chamber by changing the jet passage area and its angle, and the depth and shape of the piston top cavity. Following after the first report, in this paper, the characteristics of fuel consumption, soot emission, and exhaust gas temperature were examined and analyzed after dimension of jet passage area expanded to $70.1mm^2$ The results were that the optimum values of the jet passage area depending on the depth of the piston top cavity were different at each engine speeds and loads, and in accordance with application of engine running conditions they were able to be selected as optimum dimensions of each design parameters.

  • PDF

One-zone heat release analysis for IDI diesel engine (IDI 디젤기관의 단일영역 열발생량 계산)

  • Lee, S.Y.;Kim, G.B.;Choi, S.H.;Jeon, C.H.;Chang, Y.J.;Chun, K.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.830-836
    • /
    • 2001
  • An one-zone heat release analysis was studied for a 4 cylinder indirect diesel engine. The object of the study is to calculate the heat release accurately including the effect of specific heat ratio, heat transfer and crevice volume and to find out combustion characteristics of an indirect diesel engine cosidering the effect of both pressure in the main and swirl chambers. The integrated gross heat release values were close to the measured fuel energy at various full load operating conditions.

  • PDF

Effects on Combustion Characteristics Induced by Ignition Timing and Shape of Passagehole in a IDI Type Constant Volume Combustion Chamber (IDI형 정적 연소기에서 점화시기 및 연락공의 형상이 연소특성에 미치는 영향)

  • 윤수한;이중순;김현지;박춘근;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.220-231
    • /
    • 1996
  • In this research, we use IDI type constant volume combustion chamber which may make up stratified combustion to construct the design back data of lean-burn engine. Some experiments are conducted by the passagehole angle in the adapter of main chamber and sub-chamber. The effects on the combustion characteristics according to the ignition timing are investigated. The used fuel is methanol prospective for alternative fuel. Fuel is injected under 10.78MPa using solenoid and accumulator. As the results of the experiment, combustion characteristics reveals that ignition timing, passagehole angle and shape greatly effects on. Lean inflammability limit is extended to 0.45 in equivalence ratio.

  • PDF

A Study about the Growth of Regional Employment through the Influence of Yosu-Kwangyang Harbor. (여수(麗水).광양항(光陽港)이 지역(地域)의 고용측면(雇傭側面)에 미치는 영향(影響)에 관한 연구(硏究))

  • Jo, Gi-Ran
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.121-130
    • /
    • 1997
  • The aim of this study is to forcast the economic impact of Yosu-Kwangyang harbour on the regional employment. Industries in relation to this harbor can be divided into three parts; related industries to harbor(RI), direct dependent industries on harbor(DDI), indirect dependent industries(IDI). Research regions are 4 cities (Yosu, Yochun, Soonchun, Dongkwangyang) and 3 counties (Yochun, Seungju, Kwangyang).In the aspect of employment, the Yosu-Kwangyang harbor produced a good effect in these regions. In 1995, the rates of the dependence on harbor were showed up RI 1.63%, DBI 3.33%, IDI 15.99%, TOTAL 19.95%. In the Suture, the rates may be showed up various results as; in TOTAL rates, 33.59% in 2000, 44.95% in 2005, 48.03% in 2010, 49.82% in 2015.

  • PDF

Combustion Characteristics and Durability of Diesel Engines Burning BDF 20 (BDF 20을 사용하는 디젤기관들의 연소 및 내구특성)

  • Ryu, Kyung-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.18-28
    • /
    • 2007
  • Three diesel engines were fueled with BDF 20, a blend of 80% diesel fuel and 20% biodiesel fuel by volume, and run in excess of 200 h to evaluate their combustion characteristics and durability. The engines used for this study were a 4-cylinder 2476-cc displacement IDI diesel engine(Engine 1), a 4-cylinder l732-cc displacement IDI diesel engine(Engine 2), and a single cylinder 673-cc displacement DI diesel engine(Engine 3). Engine dynamometer testing was performed on each engine at regularly scheduled intervals to monitor the performance and exhaust emissions, which were sampled at 1h intervals for analysis, The peak combustion pressure with BDF 20 increased in Engines 1 and 3 over that measured when burning pure diesel fuel, but that in Engine 2 remained constant. Combustion parameters, such as the maximum combustion pressure and corresponding crank angle, did not change over the long-term dynamometer testing. The BSFC with BDF 20 in Engine 1 was less than that measured with pure diesel fuel. The amount of smoke produced with BDF 20 was less for all engines ; the greatest reduction was observed for Engine 3. The NOx emissions were lower in the IDI engines than the DI engine. The traditional trade-off between smoke and NOx emissions was maintained for BDF 20 fuel for Engines 1 and 3. There was not a big difference in the $CO_2\;and\;O_2$ emissions for BDF 20, as compared to pure diesel fuel, but more $CO_2$ was exhausted by Engine 1 than by Engines 2 or 3 and less $O_2$ was exhausted by Engine 1 than by Engines 2 or 3. The engine parts remained clean, except for some carbon attached to the area surrounding the nozzle hole of the DI diesel engine.

A Study on Social Perception on the Regulatory Information Service Diffusion of Traffic Facilities (교통안전시설 정보개방 서비스 확산을 위한 인식 조사 연구)

  • Im, I-Jeong;Kim, Youngmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.1-17
    • /
    • 2020
  • This Study aims to change and expand present traffic regulation from the human driver to Automated Vehicle(AV), we conducted an in-depth interview(IDI) into the traffic regulation service's strategy for an AV-related information consumer group(AVs and service developers) and a manager group (an information service management agency). The IDI results confirmed several important opinions and requirements for an information service by regulatory information manager groups (enough for AV development), such as a systematic need for dynamic regulatory information and a unified information management system. Also, we find out implications about adopting the Internet of Things (IoT) technology in traffic safety facilities to provide dynamic regulation information on the roads.

Advanced One-zone Heat Release Analysis for IDI Diesel Engine (IDI 디젤기관의 개선된 단일영역 열발생량 계산)

  • Kim Gyu-Bo;Jeon Choung-Hwan;Chang Young-Jun;Lee Suk-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1101-1110
    • /
    • 2004
  • An one-zone heat release analysis was applied to a 4 cylinder indirect injection diesel engine. The objective of the study is to calculate heat release accurately considering the effect of specific heat ratio. heat transfer and crevice model and to find out combustion characteristics of an indirect diesel engine considering the effect of the pressures in main and swirl chambers. Especially specific heat ratio indicating combustion characteristics is adapted. instead of that indicating matter properties, which has been used in former studies Moreover by adaption of blowby model, cylinder gas mass became accurately calculated. Therefore, with ideal gas equation, calculating cylinder gas temperature, it was found to affect heat transfer loss and heat release. Determining heat transfer constants $C_1$. $C_2$ as 0.6 respectively. the integrated gross heat release values were predicted well for the measured value at various engine speed, full load operating conditions. The curve of heat release rate was similar to SI engine rather than DI engine. That is originated from that swirl chamber reduce an instant combustion which occurs in DI engine due to ignition delay on early stage of combustion.

A Study on Characteristics for Performance and Exhaust Emissions on Changes of Fuel Properties and Application of EGR Method in Diesel Engines (연료성상 변화와 배기가스재순환 방법 적용에 의한 디젤기관의 성능 및 배기배출물 특성 연구)

  • Oh Young-Taig;Choi Seung-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.358-363
    • /
    • 2006
  • In this study, the effects of oxygenated fuel such as ethylene glycol mono-normal butyl ether(EGBE) was investigated both DI and IDI diesel engine. Because EGBE includes oxygen content approximately 27.1 %, it is a kind of oxygenated fuel that the smoke emission of EGBE blending fuel is reduced remarkably compared with commercial diesel fuel. The focus of this study was to investigate the effects of the addition of oxygenated fuel to diesel fuel on the engine-out emissions and the performance. Smoke emissions of all EGBE blends were reduced substantially in comparison with conventional diesel fuel. This study showed that remarkable reduction of smoke with oxygenate blending fuels in diesel engines including DI and IDI combustion method. Besides, this study showed that simultaneous reduction of smoke and NOx emissions could be achieved by oxygenated fuel and EGR method that was applied to decrease NOx emissions increasing with smoke emissions reduction.

The Characteristics of Exhaust Emissions by using Oxygenated Fuels and EGR in IDI Diesel Engine (함산소연료(Diglyme, DEE)와 EGR 방법을 이용한 간접분사식 디젤기관의 배기가스 배출 특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.108-116
    • /
    • 2002
  • The diesel engine is one of the most effective transport options available in all sizes and covering a wide range of applications. But, many researchers developing the diesel engine are facing tough challenges in view of the increasingly lower emissions standards. Thus, this study will explore the possible fuel additive technology to further reduce the emissions from the IDI diesel engine. The purpose of this study is to investigate the effects of oxygenated fuels on the exhaust emissions and to attain a better trade-off relation between smoke and NOx in four cylinder diesel engine. Experiments were conducted with oxygenated fuels as an effective way to improve the combustion efficiency. Some of oxygenated fuel(Diglyme and DEE) were added to the conventional diesel fuel which had no an oxygen content. Also, EGR was adopted for reducing NOx without any strong adverse effects on other exhaust emissions. This study concluded that exhaust emissions in diesel engine could be reduced by adding the oxygenated fuels which had lower boiling point, and the combustion efficiency was also improved as the oxygen content in fuel increased.

Durability Characteristics of an IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 특성)

  • Ryu, Kyun-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.120-127
    • /
    • 2005
  • An IDI diesel engine used to agricultural tractors was fueled with $20\%$ biodiesel fuel(BDF 20) in excess of 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. The combustion variation such as the combustion maximum pressure and the crank angle at this maximum pressure was not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about $11\%$, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.