Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.
This paper studies a method for making more efficient classification rules in the ID3 using the rough set theory. Decision tree technique of the ID3 always uses all the attributes in a table of examples for making a new decision tree, but rough set technique can in advance eleminate dispensable attributes. And the former generates only one type of classification rules, but the latter generates all the possibles types of them. The rules generated by the rough set technique are the simplist from as proved by the rough set theory. Therefore, ID3, applying the rough set technique, can reduct the size of the table of examples, generate the simplist form of the classification rules, and also implement an effectie classification system.
RFID 시스템에서 리더와 태그는 단일 무선 공유 채널을 갖기 때문에 RFID 수동형 태그를 위한 태그 충돌 중재가 태그 인식을 위한 중요한 이슈이다. 본 논문에서는 태그 충돌 방지를 위한 하이브리드 하이퍼 쿼리 트리 알고리즘($H^{2}QT$, Hybrid Hyper Query Tree)을 제안한다. 제안된 알고리즘은 쿼리 트리를 기반으로 태그가 리더에게 ID를 전송하는 시점을 전송ID 상위 3비트 내의 '1'값을 이용하여 결정한다. 또한 전송 받은 Tag의 상위 3비트는 충돌이 발생하더라도 전송 슬롯에 따라 다르므로 제안한 알고리즘에서 예측이 가능하다. 시뮬레이션을 통한 성능 평가에서 다른 트리 기반 프로토콜에 비해 제안한 알고리즘이 쿼리 횟수에서 높은 성능을 갖는다는 것을 보여준다.
중소기업에서도 시스템적으로 기업을 운영하는 곳도 있지만 대부분의 중소기업에서는 CEO 개인의 역량과 수준에 따라 기업의 경영패턴이 달라진다고 할 수 있다. 이러한 관점에서 중소기업의 CEO의 역량과 수준에 대한 연구는 매우 의미있다고 할 수 있다. 따라서, 본 연구에서는 중소제조업체의 CEO를 대상으로 설문을 통하여 중소기업 CEO의 핵심역량을 발굴하고 중소기업 CEO의 핵심역량을 평가할 수 있는 모델을 제안하였다. 또한 중소기업 CEO의 핵심역량과 수준에 대한 전문가 평가를 통하여 구한 데이터를 ID3와 퍼지ID3를 이용하여 패턴분석을 하였으며, 그 결과로 생성되는 if-then 퍼지룰과 의사결정트리가 중소기업의 CEO 핵심역량 평가에 유용하다는 것을 보였다.
Facial expressions provide significant clues about one's emotional state; however, it always has been a great challenge for machine to recognize facial expressions effectively and reliably. In this paper, we report a method of feature-based adaptive motion energy analysis for recognizing facial expression. Our method optimizes the information gain heuristics of ID3 tree and introduces new approaches on (1) facial feature representation, (2) facial feature extraction, and (3) facial feature classification. We use minimal reasonable facial features, suggested by the information gain heuristics of ID3 tree, to represent the geometric face model. For the feature extraction, our method proceeds as follows. Features are first detected and then carefully "selected." Feature "selection" is finding the features with high variability for differentiating features with high variability from the ones with low variability, to effectively estimate the feature's motion pattern. For each facial feature, motion analysis is performed adaptively. That is, each facial feature's motion pattern (from the neutral face to the expressed face) is estimated based on its variability. After the feature extraction is done, the facial expression is classified using the ID3 tree (which is built from the 1728 possible facial expressions) and the test images from the JAFFE database. The proposed method excels and overcomes the problems aroused by previous methods. First of all, it is simple but effective. Our method effectively and reliably estimates the expressive facial features by differentiating features with high variability from the ones with low variability. Second, it is fast by avoiding complicated or time-consuming computations. Rather, it exploits few selected expressive features' motion energy values (acquired from intensity-based threshold). Lastly, our method gives reliable recognition rates with overall recognition rate of 77%. The effectiveness of the proposed method will be demonstrated from the experimental results.
웹에서, 모바일, 스마트에서 시작하여 사물인터넷, 빅데이터, 인공지능과 같은 형태의 새로운 기술들은 이전에 존재하지 않았던 새로운 비즈니스 모델을 가능하게 하고 있고, 이와 같은 비즈니스 모델에 기반한 다양한 형태의 인터넷 기업들이 출현하고 있다. 본 연구에서는 이와 같은 인터넷 기업들의 성공과 실패에 비즈니스 모델의 어떠한 요소가 영향을 미쳐왔는지를 중다사례 연구로 분석하고자 한다. 이를 위하여 비즈니스 모델에 대한 최근 연구들을 고찰하고, 인터넷 기업의 성공에 영향을 미치는 변수를 네트워크 효과 발생, 사용자 인터페이스, 제공 이해관계자와의 협력, 사용자에 대한 가치창출, 수익모델의 확보의 다섯 가지로 도출하고자 한다. 도출한 다섯 가지 변수를 사용하여, 상업화가 활발한 일곱 가지 카테고리에서 성공하고 실패한 인터넷 기업 14개를 선정하여 사례분석을 실시하고자 한다. 분석결과에 대하여 ID3 알고리즘에 기반을 둔 귀납적 추론을 적용하여 의사결정 나무를 도출하고, 도출한 의사결정 나무를 기반으로 성공과 실패에 영향을 미치는 규칙을 도출하고자 한다. 이와 같이 도출된 규칙을 가지고, 인터넷 기업들이 성공하기 위하여 필요한 전략적 방향을 이해관계자에게 제시하고자 한다.
In RFID systems, the anti-collision algorithm is being improved to recognize Tag's ID within recognition area of the reader quickly and efficiently. This paper focuses on Tag collision. Many studies have been carried out to resolve Tag collision. This paper proposes a new N-ary Query Tree Algorithm to resolve more than Tag collision simultaneously, according to the value of m(2 ~ 6). This algorithm can identify more tags than existing methods by treating a maximum 6 bit collision, regardless of the continuation/non-continuation Tag's ID patterns. So, it extracts maximumly different $2^6$ bit patterns per single prefix in recognition process. The performance of N-ary Query Tree Algorithm is evaluated by theoretical analysis and simulation program.
본 논문에서는 중소기업의 지속가능경영을 평가하기 위한 평가모델을 제안하였다. 또한, 퍼지 ID3에 의하여 구해진 패턴분석에 대한 if-then 룰과 의사결정트리를 보여준다. 본 논문에서 제안한 평가모델은 중소기업의 경쟁력 향상의 평가도구로서 사용이 가능하다. 중소기업이 퍼지 ID3를 이용한 지속가능경영의 패턴분석에 사용된 평가 룰을 사전에 알 수 있다면 중소기업들의 자체 평가에 효과적으로 사용될 수 있으리라 기대된다.
세계 10대 도시이며 Metro City인 서울특별시는 인쇄, 봉제, 기계금속 등 전통적인 도심제조업이 분포되어있다. 이들 제조업 집적지 내 소상공인은 서로 상부상조 하는 형태로 발전해왔다. 집적지의 특성상 각 공정은 개별 업체가 담당한다. 상대적으로 영세한 소상공인이 공정 간 실시간 물류 이동 정보를 제공하는 주문처리 서비스를 준비하기에 어려운 현실이다. 본 논문에서는 패키지(Package) 제조 및 특수인쇄 분야 소상공인의 원활한 수주, 배송 처리를 위해 기존 물류 Data를 수집, 분석하고 CRNN, k-NN, ID3 Decision Tree algorithm을 적용한 인공지능 Fulfillment Service Platform 시스템을 설계한다. 본 연구를 통하여 집적지 소상공인 누구나 Cloud 네트워크를 통하여, 개별 수주, 배송 맞춤서비스를 사용할 수 있게 함으로써 매출 증대 및 역량 향상에 크게 기여할 것으로 기대한다.
결정 트리(Decision Tree)는 주어진 데이터의 경향을 학습하는 데 사용되는 대표적인 방식이다. 이것은 주어진 데이터를 구조화하기 위하여 데이터의 속성과 정보의 엔트로피에 기반을 둔 정보획득량을 이용한다. 본 논문에서는 유비쿼터스 환경에서 사용자 프로파일 정보처럼 시간에 따라 그 경향이 변하는 데이터에 유용하게 적용할 수 있는 시간 가중치 엔트로피를 정의한다. 그리고 ID3 알고리즘을 기반으로 새롭게 제안하는 시간 가중치 엔트로피를 이용하는 향상된 ID3 알고리즘을 쓰고 사용자의 경향을 분석한다. 본 논문에서 제안하는 엔트로피를 이용하는 방식은 데이터들의 시간에 관한 영향을 고려해서 기준방식보다 분석결과가 더욱 유리하다. 두 방식의 비교 테스트 결과를 보면 시간 가중치 엔트로피를 이용하는 알고리즘은 기존의 ID3 알고리즘보다 구성된 트리의 구조가 매우 간단하고 유리하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.