• Title/Summary/Keyword: ICP/OES

Search Result 200, Processing Time 0.026 seconds

A study on Etch Characteristics of {Y-2}{O_3}$ Thin Films in Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 {Y-2}{O_3}$ 박막의 식각 특성 연구)

  • Kim, Yeong-Chan;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.9
    • /
    • pp.611-615
    • /
    • 2001
  • Y$_2$O$_3$ thin films have been proposed as a buffering insulator of metal/ferroelectric/insulator/semiconductor field effect transistor(MFISFET)-type ferroelectric random access memory (FRAM). In this study, $Y_2$O$_3$ thin films were etched with inductively coupled plasma(ICP). The etch rates of $Y_2$O$_3$ and YMnO$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were investigated by varying Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2$O$_3$, and the selectivity of $Y_2$O$_3$ to YMnO$_3$ were 302$\AA$/min, and 2.4 at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2 respectively. Optical emission spectroscopy(OES) was used to understand the effects of gas combination on the etch rate of $Y_2$O$_3$ thin film. The surface reaction of the etched $Y_2$O$_3$ thin films was investigated by x-ray photoelectron spectroscopy (XPS). XPS analysis confirmed that there was chemical reaction between Y and Cl. This result was confirmed by secondary ion mass spectroscopy(SIMS) analysis.

  • PDF

Surface reaction of $HfO_2$ etched in inductively coupled $BCl_3$ plasma ($BCl_3$ 유도결합 플라즈마를 이용하여 식각된 $HfO_2$ 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Um, Doo-Seunng;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.477-477
    • /
    • 2008
  • For more than three decades, the gate dielectrics in CMOS devices are $SiO_2$ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 urn and 2 urn or less), gate leakage current is increased and reliability of $SiO_2$ is reduced. Many metal oxides such as $TiO_2$, $Ta_2O_4$, $SrTiO_3$, $Al_2O_3$, $HfO_2$ and $ZrO_2$ have been challenged for memory devices. These materials posses relatively high dielectric constant, but $HfO_2$ and $Al_2O_3$ did not provide sufficient advantages over $SiO_2$ or $Si_3N_4$ because of reaction with Si substrate. Recently, $HfO_2$ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating $HfO_2$. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of $HfO_2$ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in $BCl_3$ based plasma to etch $HfO_2$ thin films. In this work, the samples of $HfO_2$ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of $BCl_3$/Ar were obtained 20% $BCl_3$/ 80% Ar. Over 20% $BCl_3$ addition, the etch rate of $HfO_2$ decreased. The etching rate of $HfO_2$ and selectivity of $HfO_2$ to Si were investigated with using in inductively coupled plasma etching system (ICP) and $BCl_3/Cl_2$/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for $HfO_2$ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of $HfO_2$ in $BCl_3/Cl_2$/Ar plasma was compared with surface of as-doped $HfO_2$ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

  • PDF

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

Environmental Effect of the Reduced Slag in the Electric Furnace (전기로 제강 환원슬래그 혼합토의 환경적 영향)

  • Na, Hyunsu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • The oxidation slag has been widely used in civil engineering project, whereas the reduced slag from electric furnace has yet to be applied. Consequently in order to find out the recycling method in civil engineering field, the mineral compositions of the reduced slag were analyzed and some tests on water quality were performed to estimate the potential release of toxic compounds. Slag-soil mixtures of 0, 10, 20 and 30%(dry weight) soil were prepared in lysimeter columns and the effluents were collected with the period of one, two and four week options in closed system, respectively. The result from qualitative and quantitative analysis using X-ray Diffraction(XRD) and X-ray Fluorescence(XRF) indicates that the main mineral of the reduced slag is $Ca_2(SiO_4)$, a kind of calcium silicate. Also, the leaching medium analyzed by Inductively Coupled Plasma Optical Emission Spectroscopy(ICP-OES) showed that main heavy metals such as Al, Fe and Mn are included in the reduced slag due to the effect of steel production process. It can be seen that the leachate does not violate the regulation guide line of waste material of heavy metal. Also the pH levels were increased from pH 6.9 for 0% soil to pH 10 for 30% soil. However the influence on leachate circulation period of one through four weeks was negligible.

Exposure Assessment of Heavy Metals Migrated from Glassware on the Korean Market (국내 유통 식품용 유리제의 중금속 노출 평가)

  • Kim, Eunbee;Hwang, Joung Boon;Lee, Jung Eun;Choi, Jae Chun;Park, Se-Jong;Lee, Jong Kwon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • The purpose of our study was to investigate the migration level of lead (Pb), cadmium (Cd), and barium (Ba) from glassware into a food simulant and to evaluate the exposure of each element. The test articles were glassware, including tableware, pots, and other containers. Pb, Cd, and Ba were analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The analytical performance of the method was validated in terms of its linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and uncertainty. The monitoring was performed for 110 samples such as glass cups, containers, pots, and bottles. a food simulant. Migration test was conducted at 25? for 24 hours in a dark place using 4% acetic acid as a food simulant. Based on the data; exposure assessment was carried out to compare the estimated daily intake (EDI) to the human safety criteria. The risk levels of Pb and Ba determined in this study were approximately 1.9% and 0.3% of the provisional tolerable weekly intake (PTWI) and tolerable daily intake (TDI) value, respectively, thereby indicating a low exposure to the population.

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

유도결합플라즈마 공정에서 조건별 플라즈마 방출광 세기 변화에 따른 전자온도의 전기적, 광학적 진단에 관한 연구

  • Lee, Ye-Seul;Park, Hye-Jin;Choe, Jin-U;Kim, U-Jae;Hwang, Sang-Hyeok;Jo, Tae-Hun;Yun, Myeong-Su;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.215.1-215.1
    • /
    • 2016
  • 플라즈마는 반도체, 디스플레이, 태양전지 등 다양한 산업 분야에 이용된다. 플라즈마 공정 시 수율 향상을 위해 플라즈마를 진단하는 기술이 필요한데, 대표적으로 전자온도가 있다. 반도체 공정의 낮은 압력과 높은 밀도의 플라즈마에서 전자온도는 1~10 eV 정도인데, 0.5 eV정도의 아주 적은 차이로도 공정 결과에 큰 영향을 미친다. 플라즈마의 전자온도를 측정하는 방법은 전기적 탐침 방법인 랑뮤어 탐침(Langmuir Probe)과 와이즈 프로브(Wise Probe)를 이용한 방법, 그리고 광학적 방법인 방출분광법(OES : Optical Emission Spectroscopy)이 있다. 전기적 탐침 방법은 직접 플라즈마 내부에 탐침을 넣기 때문에 불활성 기체를 사용한 공정에서는 잘 작동하지만 건식식각이나 증착에 사용할 경우 탐침의 오염으로 인한 오동작, 공정 시 생성된 샘플에 영향을 줄 수 있다는 단점이 있다. 반면에 방출분광법은 광학적 진단으로, 플라즈마를 사용하는 공정 진행 중에 외부에 광학계를 설치하여 플라즈마에서 발생하는 빛을 광학적으로 분석하기 때문에 공정에 영향을 미치지 않고, 공정 장비에 적용이 쉬운 장점을 가지고 있다. 본 연구에서는 RF Power를 인가한 유도결합플라즈마(ICP : Inductively Coupled Plasma) 공정에서 아르곤 가스와 산소 혼합가스 분압과 인가전압을 변화시켜 플라즈마 방출광 세기 변화에 따른 전자온도를 측정하였다. 전자온도 측정에는 전기적 방법인 랑뮤어 탐침, 와이즈 프로브를 이용한 방법과 광학적 방법인 방출분광법을 사용하여 측정하였으며 이를 비교 분석하였다.

  • PDF

Study on scheme for screening, quantification and interpretation of trace amounts of hazardous inorganic substances influencing hazard classification of a substance in REACH registration (REACH 물질 등록 시 분류에 영향을 주는 미량 유해 무기물질의 스크리닝·정량·해석을 위한 체계도 연구)

  • Kwon, Hyun-ah;Park, Kwang Seo;Son, Seung Hwan;Choe, Eun Kyung;Kim, Sanghun
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.233-242
    • /
    • 2019
  • Substance identification is the first step of the REACH registration. It is essential in terms of Classification, Labelling and Packaging (CLP) regulation and because even trace amounts of impurities or additives can affect the classification. In this study, a scheme for the screening, quantification, and interpretation of trace amounts of hazardous inorganic substances is proposed to detect the presence of more than 0.1% hazardous inorganic substances that have been affecting the hazard classification. An exemplary list of hazardous inorganic substances was created from the substances of very high concern (SVHCs) in REACH. Among 201 SVHCs, there were 67 inorganic SVHCs containing at least one or ~2-3 heavy metals, such as As, Cd, Co, Cr, Pb, Sb, and Sn, in their molecular formula. The inorganic SVHCs are listed in excel format with a search function for these heavy metals so that the hazardous inorganic substances, including each heavy metal and the calculated ratio of its atomic weight to molecular weight of the hazardous inorganic substance containing it, can be searched. The case study was conducted to confirm the validity of the established scheme with zinc oxide (ZnO). In a substance that is made of ZnO, Pb was screened by XRF analysis and measured to be 0.04% (w/w) by ICP-OES analysis. After referring to the list, the presence of Pb was interpreted just as an impurity, but not as an impurity relevant for the classification. Future studies are needed to expand on this exemplary list of hazardous inorganic substances using proper regulatory data sources.

Distribution Correlation between Heavy Metals Contaminants and PAHs Concentrations of Soils in the Vicinity of Abandoned Mines (폐광산지역 토양에서 중금속과 PAHs 농도 분포 상관관계)

  • Ki, Seong-Kan;Park, Ha-Seung;Jo, Rae-Hyeon;Choi, Kyoung-Kyoon;Yang, Hyun;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.239-244
    • /
    • 2014
  • BACKGROUND: Heavy metals contamination of soils in the vicinity of abandoned mines in South Korea has been investigated. However, PAHs contamination rarely has been studied. Both heavy metals and PAHs concentrations have been measured in this study. METHODS AND RESULTS: The samples of soil and sediment were collected from the vicinities of three abandoned coal mines and two abandoned metal mines for analysis of heavy metals contaminants and PAHs concentration from April to September 2012. After preparation of these samples following the Korean standard test method for soils, the concentrations of heavy metals contaminants and PAHs were measured using ICP-OES and GC-MS, respectively. It was observed that the concentration of Arsenic was above the concern level based on 'area 1' suggested by Korean soil conservation law, resulting that Arsenic is the main contaminant in these areas. Also Cd, Cu, Pb and Zn were observed as a partial contaminants. The concentrations of other investigated components including benzo(a)pyrene were less than the concern level. CONCLUSION: The correlation observed between Arsenic (as main contaminant) and PAHs concentrations suggested that the contaminant source and pathway are different for each other. The effect of mine activity on PAHs concentration was rarely observed.