• Title/Summary/Keyword: ICA분석

Search Result 164, Processing Time 0.03 seconds

A Study on the Low Force Estimation of Skeletal Muscle by using ICA and Neuro-transmission Model (독립성분 분석과 신전달 모델을 이용한 근육의 미세한 힘의 추정에 관한 연구)

  • Yoo, Sae-Keun;Youm, Doo-Ho;Lee, Ho-Yong;Kim, Sung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.632-640
    • /
    • 2007
  • The low force estimation method of skeletal muscle was proposed by using ICA(independent component analysis) and neuro-transmission model. An EMG decomposition is the procedure by which the signal is classified into its constituent MUAP(motor unit action potential). The force index of electromyography was due to the generation of MUAP. To estimate low force, current analysis technique, such as RMS(root mean square) and MAV(mean absolute value), have not been shown to provide direct measures of the number and timing of motoneurons firing or their firing frequencies, but are used due to lack of other options. In this paper, the method based on ICA and chemical signal transmission mechanism from neuron to muscle was proposed. The force generation model consists of two linear, first-order low pass filters separated by a static non-linearity. The model takes a modulated IPI(inter pulse interval) as input and produces isometric force as output. Both the step and random train were applied to the neuro-transmission model. As a results, the ICA has shown remarkable enhancement by finding a hidden MAUP from the original superimposed EMG signal and estimating accurate IPI. And the proposed estimation technique shows good agreements with the low force measured comparing with RMS and MAV method to the input patterns.

Comparisons of Linear Feature Extraction Methods (선형적 특징추출 방법의 특성 비교)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, feature extraction methods, which is one field of reducing dimensions of high-dimensional data, are empirically investigated. We selected the traditional PCA(Principal Component Analysis), ICA(Independent Component Analysis), NMF(Non-negative Matrix Factorization), and sNMF(Sparse NMF) for comparisons. ICA has a similar feature with the simple cell of V1. NMF implemented a "parts-based representation in the brain" and sNMF is a improved version of NMF. In order to visually investigate the extracted features, handwritten digits are handled. Also, the extracted features are used to train multi-layer perceptrons for recognition test. The characteristic of each feature extraction method will be useful when applying feature extraction methods to many real-world problems.

Tree-Dependent Components of Gene Expression Data for Clustering (유전자발현데이터의 군집분석을 위한 나무 의존 성분 분석)

  • Kim Jong-Kyoung;Choi Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.4-6
    • /
    • 2006
  • Tree-dependent component analysis (TCA) is a generalization of independent component analysis (ICA), the goal of which is to model the multivariate data by a linear transformation of latent variables, while latent variables fit by a tree-structured graphical model. In contrast to ICA, TCA allows dependent structure of latent variables and also consider non-spanning trees (forests). In this paper, we present a TCA-based method of clustering gene expression data. Empirical study with yeast cell cycle-related data, yeast metaboiic shift data, and yeast sporulation data, shows that TCA is more suitable for gene clustering, compared to principal component analysis (PCA) as well as ICA.

  • PDF

Improvement of MLLR Speaker Adaptation Algorithm to Reduce Over-adaptation Using ICA and PCA (과적응 감소를 위한 주성분 분석 및 독립성분 분석을 이용한 MLLR 화자적응 알고리즘 개선)

  • 김지운;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.539-544
    • /
    • 2003
  • This paper describes how to reduce the effect of an occupation threshold by that the transform of mixture components of HMM parameters is controlled in hierarchical tree structure to prevent from over-adaptation. To reduce correlations between data elements and to remove elements with less variance, we employ PCA (Principal component analysis) and ICA (independent component analysis) that would give as good a representation as possible, and decline the effect of over-adaptation. When we set lower occupation threshold and increase the number of transformation function, ordinary MLLR adaptation algorithm represents lower recognition rate than SI models, whereas the proposed MLLR adaptation algorithm represents the improvement of over 2% for the word recognition rate as compared to performance of SI models.

Iris Feature Extraction using Independent Component Analysis (독립 성분 분석 방법을 이용한 홍채 특징 추출)

  • 노승인;배광혁;박강령;김재희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.20-30
    • /
    • 2003
  • In a conventional method based on quadrature 2D Gator wavelets to extract iris features, the iris recognition is performed by a 256-byte iris code, which is computed by applying the Gabor wavelets to a given area of the iris. However, there is a code redundancy because the iris code is generated by basis functions without considering the characteristics of the iris texture. Therefore, the size of the iris code is increased unnecessarily. In this paper, we propose a new feature extraction algorithm based on the ICA (Independent Component Analysis) for a compact iris code. We implemented the ICA to generate optimal basis functions which could represent iris signals efficiently. In practice the coefficients of the ICA expansions are used as feature vectors. Then iris feature vectors are encoded into the iris code for storing and comparing an individual's iris patterns. Additionally, we introduce two methods to enhance the recognition performance of the ICA. The first is to reorganize the ICA bases and the second is to use a different ICA bases set. Experimental results show that our proposed method has a similar EER (Equal Error Rate) as a conventional method based on the Gator wavelets, and the iris code size of our proposed methods is four times smaller than that of the Gabor wavelets.

Feature Extraction of Object Images by Using ICA-basis of Fixed-Point Algorithm (고정점 알고리즘의 ICA-basis에 의한 물체영상의 특징추출)

  • 조용현;홍성준
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.90-93
    • /
    • 2004
  • 본 논문에서는 고정점 알고리즘의 독립성분분석을 이용한 물체영상의 특징추출을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법에 기초한 것으로 빠른 특징추출성능을 얻기 위함이고, 독립성분분석의 이용은 통계적으로 독립인 기저영상을 효과적으로 추출하기 위함이다. 제안된 기법을 Image*after사에서 제공하는 352$\times$264 픽셀의 10개 물체영상을 대상으로 실험한 결과, 빠르면서도 정확한 복원성능과 PCA보다도 개선된 특징 추출성능이 있음을 확인하였다.

  • PDF

Image Classification for Independent Component Analysis and Kurtosis Using Grey Block Distance Algorithm (그레이 블록 거리 알고리즘을 이용한 독립성분분석과 첨도에서의 영상분류)

  • 홍준식;백승철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.505-507
    • /
    • 2002
  • 본 논문에서는 그레이 블록 거리알고리즘(grey block algorithms, 이하 GBD)을 이용하여 독립성분분석(independent component analysis; 이하 ICA) 및 첨도(Kurtosis)에서의 영상간의 거리를 측정하여, 어느 정도 영상간의 상대적 식별을 용이하게 하여 영상 분류가 되는지 모의 실험을 통하여 확인하고자 한다. 모의 실험 결과로부터, ICA에서는 k는 8까지 상대적 식별이 되어 영상 분류가 되었고, 첨도에서는 영상간의 상대적 식별을 k가 4까지만 블록을 분할 할 수 있었다.

  • PDF

Forecasting Korean housing price index: application of the independent component analysis (부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석)

  • Pak, Ro Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.271-280
    • /
    • 2017
  • Real-estate values and related economics are often the first read newspaper category. We are concerned about the opinions of experts on the forecast for real estate prices. The Box-Jenkins ARIMA model is a commonly used statistical method to predict housing prices. In this article, we tried to predict housing prices by combining independent component analysis (ICA) in multivariate data analysis and the Box-Jenkins ARIMA model. The two independent components for both the selling price index and the long-term rental price index were extracted and used to predict the future values of both indices. In conclusion, it has been shown that the actual indices and the forecast indices using ICA are more comparable to the forecasts of the ARIMA model alone.

Input Variable Selection by Using Fixed-Point ICA and Adaptive Partition Mutual Information Estimation (고정점 알고리즘의 독립성분분석과 적응분할의 상호정보 추정에 의한 입력변수선택)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.525-530
    • /
    • 2006
  • This paper presents an efficient input variable selection method using both fixed-point independent component analysis(FP-ICA) and adaptive partition mutual information(AP-MI) estimation. FP-ICA which is based on secant method, is applied to quickly find the independence between input variables. AP-MI estimation is also applied to estimate an accurate dependence information by equally partitioning the samples of input variable for calculating the probability density function(PDF). The proposed method has been applied to 2 problems for selecting the input variables, which are the 7 artificial signals of 500 samples and the 24 environmental pollution signals of 55 samples, respectively The experimental results show that the proposed methods has a fast and accurate selection performance. The proposed method has also respectively better performance than AP-MI estimation without the FP-ICA and regular partition MI estimation.

A New Carrier frequency Offset Estimation Using CP-ICA Scheme in OFDM Systems (OFDM 시스템에서 CP-ICA 기법을 이용한 새로운 주파수 옵셋 추정)

  • Kim, Jong-Deuk;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1257-1264
    • /
    • 2006
  • The carrier frequency offset causes loss of orthogonality between sub-carriers, thus leads to inter-carrier interference (ICI) in the OFDM symbol. This ICI causes severe degradation of the BER performance of the OFDM receiver. In this paper, we propose a new ICI cancellation algorithm which estimates frequency offset at the time-domain by using CP-ICA method to the received sub-carriers phase rotation. This algorithm is based on a statistical blind estimation method, which mainly utilizes the EVD, rotating phase and the $4^{th}-cumulants$. Since our scheme does not need any training and pilot symbol in estimation, we can expect enhanced bandwidth efficiency in OFDM systems. Simulation results show that the proposed frequency offset estimator is more accurate than the other estimators in $0.0<\varepsilon<1.0$.