• Title/Summary/Keyword: IC-MS/MS

Search Result 256, Processing Time 0.026 seconds

Implementation of four-subject four-channel optical telemetry system with enforced synchronization (강제 동기식 4생체 4채널 광펠레미트리시스템 구현)

  • ;;;M.Ishida
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.40-47
    • /
    • 1998
  • This paper presents the physiological signal processing CMOS one chip for transmitting human bodys small electrical signals such as electrocardiogram(EKG) or electromyogram(EMG) and the external system for receiving signals was implemented by the commercial ICs. For simultaneous four-subject four-channel telemetry, a new enfored synchronization techniqeu using infrared bi-directional communication has been proposed. The telemeter IC with the size of 5.1*5.1mm$^{2}$ has the following functions: receiving of command signal, initialization of internal state of all functional blocks, decoding of subject-selection signal, time multiplexing of 4-channel modulated physiological signals, transmitting of telemetry signal to external system and auto power down control. The newly designed synchronized oscillator with low supply voltage dependence in the telemeter IC operates at a supply voltage from 4.6~6.0V and the nonlinearity error of PIM modulator was less than 1.2%F.S(full scale). The power saving block operates at the period of 2.5ms even if the telemetry IC does not receive command signal from external system for a constant time.

  • PDF

Screening of Potential Anticancer Compounds from Marketed Drugs: Aripiprazole, Haloperidol, Miconazole, and Terfenadine Inhibit Cytochrome P450 2J2 (시판 약물의 시토크롬 2J2 약물대사효소 저해능 탐색)

  • Liu, Kwang-Hyeon
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1558-1564
    • /
    • 2011
  • Cytochrome P450 2J2 (CYP2J2) plays important roles in the metabolism of endogenous metabolites such as arachidonic acid as well as therapeutic drugs. CYP2J2 is overexpressed in human cancer tissues and cancer cell lines, as well as in epoxyeicosatrienoic acids (EETs) and CYP2J2-mediated metabolites, and prevent apoptosis of cancer cells. This study aimed to screen marketed drugs for inhibitory potential on CYP2J2 isoforms using human liver microsomes. The initial screen isolated 4 compounds, from 120 marketed drugs, that inhibited the CYP2J2-mediated astemizole O-demethylation more than 50% in the following the order: haloperidol (75%) > terfenadine (56%) > aripiprazole (55%) > miconazole (52%). Miconazole strongly inhibited CYP2J2-mediated ebastine hydroxylation ($IC_{50}$=11.2 ${\mu}M$) and terfenadine hydroxylation ($IC_{50}$=2.2 ${\mu}M$), and terfenadine also inhibited CYP2J2-mediated ebastine hydroxylation ($IC_{50}$=13.6 ${\mu}M$) in a dose dependent manner. The present data suggest that these drugs are potential candidates for further evaluation for their anti-cancer activities.

Anti-apoptotic Effects of Terrein on Etoposide-induced Apoptosis of U937 Human Leukemia Cells (Terrein의 etoposide에 의해 유도된 apoptosis 저해효과)

  • 이충환;이호재;김진희;김현아;고영희
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.87-91
    • /
    • 2000
  • In the course of screening for the substances inhibiting apoptosis ofU937 human leukemia cell induced by etoposide, a fungal strain F80834 producing a high level of inhibitor was selected. The inhibitory substance was purified and identified as terrein by spectroscopic methods of UV, EI-MS, IH-NMR, 13C-NMR and DEPT. Terrein showed inhibitory activity of caspase 3, a major protease of apoptosis cascade, with an $IC_{50}$ value of $20\mu\textrm{g}/ml$ after 7 hrs of treatment. It also showed protective effect against cell death with an $IC_{50}$ value of $10\mu\textrm{g}/ml$ on U937 cells induced by etoposide after 24 hrs of treatment, but did not show any cytotoxicity at the same condition without etoposide.

  • PDF

Lipoxygenase Inhibitors from Paeonia lactiflora Seeds

  • Kim, Hyo-Jin;Chung, Shin-Kyo;Park, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.163-166
    • /
    • 1999
  • Previously, the methanolic extract of Paeonia lactiflora seeds was shown to have strong ingibitory activity against soybean liposygenase (SLO). Four phenolic compounds were isolated from the seeds by solvent fractionation Sephadex LJ-20 column chromatography and preparative HPLC, and three of them showed strong SLO inhibitio and were characterized as trans-resveratrol, $\varepsilon$-viniferin and luteolin by UV, IR, 1H-NMR, 13C-NMR and MS spectrometry. trans-Resveratrol (IC50=1.02$\mu$M), $\varepsilon$-viniferin (IC50=0.81$\mu$M) and luteolin (IC50=10.01$\mu$M), first found in the above seeds, exhibited a potent SLO inhibitory activity although their activity was lower than that of a well-known lipoxygenase inhibitor, nordihydroguaiaretic acid (NDGA) (IC50=0.57$\mu$M). These results suggest that Paenia lactiflora seeds, now an unused plant seed, may be developed into useful sources of anti-inflammatory drugs.

  • PDF

Open Channel Block of Kv3.1 Currents by Genistein, a Tyrosine Kinase Inhibitor

  • Choi, Bok-Hee;Park, Ji-Hyun;Hahn, Sang-June
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.71-77
    • /
    • 2006
  • The goal of this study was to analyze the effects of genistein, a widely used tyrosine kinase inhibitor, on cloned Shaw-type $K^+$ currents, Kv3.1 which were stably expressed in Chinese hamster ovary (CHO) cells, using the whole-cell configuration of patch-clamp techniques. In whole-cell recordings, genistein at external concentrations from 10 to $100{\mu}M$ accelerated the rate of inactivation of Kv3.1 currents, thereby concentration-dependently reducing the current at the end of depolarizing pulse with an $IC_{50}$ value of $15.71{\pm}0.67{\mu}M$ and a Hill coefficient of $3.28{\pm}0.35$ (n=5). The time constant of activation at a 300 ms depolarizing test pulses from -80 mV to +40 mV was $1.01{\pm}0.04$ ms and $0.90{\pm}0.05$ ms (n=9) under control conditions and in the presence of $20{\mu}M$ genistein, respectively, indicating that the activation kinetics was not significantly modified by genistein. Genistein $(20{\mu}M)$ slowed the deactivation of the tail current elicited upon repolarization to -40 mV, thus inducing a crossover phenomenon. These results suggest that drug unbinding is required before Kv3.1 channels can close. Genistein-induced block was voltage-dependent, increasing in the voltage range $(-20\'mV{\sim}0\'mV)$ for channel opening, suggesting an open channel interaction. Genistein $(20{\mu}M)$ produced use-dependent block of Kv3.1 at a stimulation frequency of 1 Hz. The voltage dependence of steady-state inactivation of Kv3.1 was not changed by $20{\mu}M$ genistein. Our results indicate that genistein blocks directly Kv3.1 currents in concentration-, voltage-, time-dependent manners and the action of genistein on Kv3.1 is independent of tyrosine kinase inhibition.

Study on the Methods of Detection and Analysis for Responding Inorganic Acids Spill (무기산 누출 사고 대응을 위한 탐지·분석 방법 연구)

  • Lee, Jin Seon;Jung, Mi Suk;Kim, Ki Joon;Ahn, Sung Young;Yoon, Young Sam;Yoon, Junheon
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2014
  • There have been frequent chemical leaks over the past 10 years. Particularly, inorganic acids like sulfuric acid, nitric acid, and hydrogen chloride take up 37 % of the total chemical accidents which took place for the past 10 years. When an acid chemical leak happens, fume is generated, diffusing into the air, which might cause serious damage to health of local residents and the environment. However, most of the acid-based chemicals, detecting and analysis methods have not been settled considering the frequency of accidents. In this study, we investigated detection and analysis methods to quickly analyze accident sites and evaluate the impacts on environments. Reviewing local and international test analysis methods of acids suggested that nitric acid, sulfuric acid, hydrogen chloride and hydrogen fluoride can be analyzed with IC. It was also found that UV is better for the analysis of hydrogen fluoride and GC/MS for acrylic acid. The analytical methods suggested in the official test methods basically have limitations of consuming much time at stages of preparation and analysis. Considering prompt responses to chemical accidents, further studies should be done to compare the applicability of rapid monitoring methods such as FT-IR, IMR-MS and SIFT-MS.

Cosmetic Activities of Nyasol from the Rhizomes of Anemarrhena asphodeloide (지모의 뿌리줄기로부터 분리된 nyasol의 미용효과)

  • Park, Yhun Jung;Ku, Chang-Sub;Kim, Min-Jin;Lee, Mi Kyeong;Kim, Ki Ohk;Ryu, Hyung Won;Song, Hyuk-Hwan;Kim, Doo Young;Oh, Sei-Ryang
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • The rhizomes of Anemarrhena asphodeloide was extracted with 100% ethanol and concentrated subfractions were separated with medium pressure liquid chromatography-based activity profiling. One compound was isolated from the subfraction 10 through the repeated preparative high performance liquid chromatography (prep-HPLC). According to physico-chemical and spectroscopic data including NMR and MS, the chemical structures of the compound was determined as nyasol (1). Nyasol was exhibited potent inhibitory activity for NO ($IC_{50}:12.5{\mu}g/mL$), tyrosinase ($IC_{50}:12.5{\mu}g/mL$), melanin contents ($IC_{50}:12.5{\mu}g/mL$), thymus and activation-regulated chemokine (TARC) production ($IC_{50}:6.25{\mu}g/mL$). As a result, nyasol has an excellent inflammation-dependent anti-whitening and TARC production activity. It could be used to a large range of functional cosmetics.

In vitro anti-cancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines (꽃송이버섯(Sparassis latifolia) 추출물 소수성 분획의 항암 활성)

  • Choi, Moon-Hee;Han, Hyo-Kyung;Lee, Yong-Jo;Jo, Han-Gyo;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.304-310
    • /
    • 2014
  • The use of mushrooms has immense potential in many diverse applications. Until now, more than 3,000 species are consumed around the world, and more than 100 have shown promising clinical activity against cancer and other chronic diseases. Sparassis latifolia (formerly S. crispa) is an edible mushroom that harbors ${\beta}$-glucan reported to possess immunostimulatory and anticancer properties. However there have been no reports on the anticancer activity of hydrophobic fractions of S. latifolia. In this study, the anticancer activities of S. latifolia extract and hydrophobic fractions were investigated using AGS (stomach cancer), A529 (lung cancer), and HepG2 (liver cancer) cell lines. In cytotoxicity results of A529 cells, fractions of A2, A3, A4, A6, A7, A8, A9, and A10 in all 12 fractions show low $IC_{50}$ values. For HepG2 cells, A7 fraction results in the lowest $IC_{50}$ value while A7, A8, and A11 fractions show low $IC_{50}$ values in AGS cells. S. latifolia extract lead to low cell viability in cancer cells, compared to positive control of paclitaxel. A compound with molecular weight of 181 were detected using HPLC-MS but not identified yet. As a result, the hydrophobic fractions of S. latifolia EtOH extract would be a possible candidate as natural anticancer agents in the future.

Decomposition of Aqueous Anatoxin-a Using Underwater Dielectric Barrier Discharge Plasma Created in a Porous Ceramic Tube (다공성 세라믹관내에서 생성되는 수중 유전체 장벽 방전 플라즈마를 이용한 아나톡신-a의 분해)

  • JO, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.167-177
    • /
    • 2016
  • This work investigated the decomposition of aqueous anatoxin-a originated from cyanobacteria using an underwater dielectric barrier discharge plasma system based on a porous ceramic tube and an alternating current (AC) high voltage. Plasmatic gas generated inside the porous ceramic tube was uniformly dispersed in the form of numerous bubbles into the aqueous solution through the micro-pores of the ceramic tube, which allowed an effective contact between the plasmatic gas and the aqueous anatoxin-a solution. Effect of applied voltage, treatment time and the coexistence of nutrients such as $NO_3{^-}$, $H_2PO_4{^-}$ and glucose on the decomposition of anatoxin-a was examined. Chemical analyses of the plasma-treated anatoxin-a solution using liquid chromatography-mass spectrometry (LC-MS) and ion chromatography (IC) were performed to elucidate the mineralization mechanisms. Increasing the voltage improved the anatoxin-a decomposition efficiency due to the increased discharge power, but the energy required to remove a given amount of anatoxin-a was similar, regardless of the voltage. At an applied voltage of 17.2 kV (oxygen flow rate: $1.0L\;min^{-1}$), anatoxin-a at an initial concentration of $1mg\;L^{-1}$ (volume: 0.5 L) was successfully treated within 3 min. The chemical analyses using LC-MS and IC suggested that the intermediates with molecular weights of 123~161 produced by the attack of plasma-induced reactive species on anatoxin-a molecule were further oxidized to stable compounds such as acetic acid, formic acid and oxalic acid.

Anticholinesterase activity of Cinnamomum zeylanicum L. leaf extract

  • Dalai, Manoj Kumar;Bhadra, Santanu;Chaudhary, Sushil Kumar;Chanda, Joydeb;Bandyopadhyay, Arun;Mukherjee, Pulok K.
    • CELLMED
    • /
    • v.4 no.2
    • /
    • pp.11.1-11.6
    • /
    • 2014
  • Cinnamomum zeylanicum (C. zeylanicum) is a tropical evergreen tree of Lauraceae family. It is one of the oldest culinary spices known and used traditionally in many cultures for centuries. In addition to its culinary uses, cinnamon also possesses as a folk remedy of many health disease condition including analgesic, antiseptic, antispasmodic, aphrodisiac, astringent, carminative, haemostatic, insecticidal, and parasiticide and memory enhancing property. This study was aimed to assess the acetylcholinesterase and butyrylcholinesterase inhibitory activity of standardized methanol extract of the C. zeylanicum. Gas chromatography - mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC) analysis were done to identify the presence of eugenol as chemical component and support the neuroprotective activity in the extract. Anticholinesterase inhibitory activity of crude methanol extract of C. zeylanicum leaves and cinnamon oil were evaluated by 96-well microtiter plate assay and thin layer chromatography bioassay detection methods. This study revealed that cinnamon oil ($IC_{50}:45.88{\pm}1.94{\mu}g/ml$) has better anticholinesterase activity than methanol extract ($IC_{50}:77.78{\pm}0.03{\mu}g/ml$). In HPLC analysis, retention time of eugenol in cinnamon oil was found to be 15.81 min which was comparable with the retention time (15.99 min) of the reference standard, eugenol. Seven chemical compounds were identified by GC-MS analysis, in which eugenol as an important phytoconstituents. Thus the phytochemicals from C. zeylanicum methanol leaves extract could be developed as potential source of anticholinesterase activity, with particular benefit in the symptomatic treatment of Alzheimer's disease.