• Title/Summary/Keyword: IBN

Search Result 242, Processing Time 0.028 seconds

Issues of Harmonization of ISO 9001 Standard and the Law 09-08. Protection of Personal Data in Morocco: Potentials and Risks

  • Adil CHEBIR ;Ibtissam EL MOURY;Adil ECHCHELH;Omar TAOUAB
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.57-66
    • /
    • 2023
  • Since 2009, Morocco has had a law governing the processing of personal data, the law 09-08, and a supervisory authority, the CNDP (National Commission for the Protection of Personal Data). Since May 2018, the European General Regulation on the Protection of Personal Data (GDPR) entered into force, which applies outside the EU in certain cases and therefore to certain Moroccan companies. The question of the protection of personal data is primarily addressed to the customer. The latter may not only be a victim of crime linked to ICT, but also have to face risks linked to the collection and abusive processing of his personal data by the private and public sectors. Often the customer does not really know how their data is stored, nor for how long and for what purpose. This fact raises the question of satisfying customer requirements, in particular for organizations that have adopted a quality approach based on ISO 9001 standard.In order to master these constraints, Moroccan companies have to adopt strategies based on modern quality management techniques, especially the adoption of principles issued from the international standard ISO 9001 while being confirmed by the law 09-08. It is through ISO 9001 and the law 09-08 that these companies can refer to recognized approaches in terms of quality and compliance. The major challenge for these companies is to have a Quality approach that allows the coexistence between the law 09-08 and ISO 9001 standard and this article deals within this specific context.

The influence of Ni ion addition on the microstructure and gamma ray shielding ability of ferromagnetic CuFe2O4 ceramic material

  • Mohammad W. Marashdeh;Fawzy H. Sallam;Ahmed M. Abd El-Aziz;Mohamed I. Elkhatib;Sitah f. Alanazi;Mamduh J. Aljaafreh;Mohannad Al-Hmoud;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2740-2747
    • /
    • 2024
  • The sintering process acquired ferromagnetic copper ferrite ceramic material with a small concentration of Ni ion at 1100 ℃ for 1 h. Previously, copper ferrite with Ni proportions powder was acquired by the wet chemical process according to the relation CuFe2-xNixO4 where x takes values 0.0, 0.015, 0.03, 0.04, and 0.05. The role of Ni ion in the copper ferrite structure was investigated by X-ray analysis, Scanning electron microscope, EDX analysis, and density measurements. The gamma-ray shielding properties for the fabricated CuFeNiO ceramics samples were evaluated using the Monte Carlo simulation method. The obtained results show an enhancement in the linear attenuation coefficient for the fabricated ceramics with increasing the insertions of Ni ions within the fabricated samples, where increasing the Ni ions concentration between 0 and 1.19 wt% increases the linear attenuation by between 1.581 and 1.771 cm-1 (at 0.103 MeV), 0.304-0.338 cm-1 (at 0.662 MeV), and 0.160-0.178 cm-1 (at 2.506 MeV), respectively. Simultaneously, the radiation protection efficiency for a 1 cm thickness of the fabricated samples increased between 14.8 and 16.3% with increasing the Ni ions between 0 and 1.19 wt%. Although the Ni doping concentration does not exceed 1.5 wt% of the total composition of the fabricated ceramics, the shielding capacity of the fabricated ceramics was enhanced by more than 11%, along the studied energy interval. Therefore, the fabricated samples can be used in gamma-ray shielding applications.

Advanced radiation shielding materials: PbO2-doped zirconia ceramics synthesized through innovative sol-gel method

  • Islam G. Alhindawy;Mohammad. W. Marashdeh;Mamduh. J. Aljaafreh;Mohannad Al-Hmoud;Sitah Alanazi;K. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2444-2451
    • /
    • 2024
  • This work demonstrates a new sol-gel approach for synthesizing PbO2-doped zirconia using zircon mineral precursors. The streamlined methodology enables straightforward fabrication of the doped zirconia composites. Comprehensive materials characterization was performed using XRD, SEM, and TEM techniques to analyze the crystal structure, microstructure, and morphology. Quantitative analysis of the XRD data provided insights into the nanoscale crystallite sizes achieved, along with their relationship to lattice imperfections. Furthermore, the gamma-ray shielding capacity for the PbO2-doped zirconia samples was estimated by the Monte Carlo simulation, which proves an increase in the gamma ray shielding properties by raising the Pb concentration. The linear attenuation coefficient increased between 0.467 and 0.499 cm-1 (at 0.662 MeV) by increasing the Pb content between 11 and 21 wt%. By increasing the Pb content to 21 wt%, the synthesized composites' lead equivalent thickness reaches 2.49 cm. The radiation shielding properties for the synthesized composites revealed a remarkable performance against low and intermediate γ-ray photons, with radiation shielding capacity of 37.3 % and 21.4 % at 0.662 MeV and 2.506 MeV, respectively. As a result, the developed composites can be employed as an alternative shielding material in hospitals and radioactive zones.

Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle

  • Boulal, Ammar;Bensattalah, Tayeb;Karas, Abdelkader;Zidour, Mohamed;Heireche, Houari;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.209-223
    • /
    • 2020
  • This paper investigates the buckling behavior of carbon nanotube-reinforced composite plates supported by Kerr foundation model. In this foundation elastic of Kerr consisting of two spring layers interconnected by a shearing layer. The plates are reinforced by single-walled carbon nanotubes with four types of distributions of uniaxially aligned reinforcement material. The analytical equations are derived and the exact solutions for buckling analyses of such type's plates are obtained. The mathematical models provided, and the present solutions are numerically validated by comparison with some available results in the literature. Effect of various reinforced plates parameters such as aspect ratios, volume fraction, types of reinforcement, parameters constant factors of Kerr foundation and plate thickness on the buckling analyses of carbon nanotube-reinforced composite plates are studied and discussed.

Comparative analysis for the corrosion susceptibility of copper alloys in sandy soil

  • Galai, Mouhsine;Benqlilou, Hanane;Touhami, Mohamed Ebn;Belhaj, Tounsi;Berrami, Khalifa;El Kafssaoui, Hassan
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.164-174
    • /
    • 2018
  • Corrosion of copper alloys (copper, bronze and brass) in soil was evaluated at ambient temperature using various methods such as electrochemical impedance spectroscopy (EIS), polarization curves and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy microanalysis measurements. Three equivalent circuits were separately used to interpret the obtained impedance spectra. The EIS measurements indicated that the polarization resistance of all electrodes increases with increasing the immersion time. SEM showed a presence of three layers of corrosion products with various composition and morphology covering each electrode. In addition, it was found that at 20% of moisture content the $R_p$ values and the current density of all electrodes in the studied soil give the following order: copper > bronze > brass. Good consistency between the data obtained from EIS and PP measurements was observed.

An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions

  • Adim, Belkacem;Daouadji, Tahar Hassaine;Rabia, Benferhat;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.63-82
    • /
    • 2016
  • In this study, the bending and dynamic behaviors of laminated composite plates is examined by using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates under various boundary conditions. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. Numerical results for the bending and dynamic behaviors of antisymmetric cross-ply laminated plate under various boundary conditions are presented. The validity of the present solution is demonstrated by comparison with solutions available in the literature. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Effect of stacking sequence of the bonded composite patch on repair performance

  • Beloufa, Hadja Imane;Ouinas, Djamel;Tarfaoui, Mostapha;Benderdouche, Noureddine
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.295-313
    • /
    • 2016
  • In this study, the three-dimensional finite element method is used to determine the stress intensity factor in Mode I and Mixed mode of a centered crack in an aluminum specimen repaired by a composite patch using contour integral. Various mesh densities were used to achieve convergence of the results. The effect of adhesive joint thickness, patch thickness, patch-specimen interface and layer sequence on the SIF was highlighted. The results obtained show that the patch-specimen contact surface is the best indicator of the deceleration of crack propagation, and hence of SIF reduction. Thus, the reduction in rigidity of the patch especially at adhesive layer-patch interface, allows the lowering of shear and normal stresses in the adhesive joint. The choice of the orientation of the adhesive layer-patch contact is important in the evolution of the shear and peel stresses. The patch will be more beneficial and effective while using the cross-layer on the contact surface.

Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation

  • Khelifa, Zoubida;Hadji, Lazreg;Daouadji, Tahar Hassaine;Bourada, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • This study deals with buckling analysis with stretching effect of functionally graded carbon nanotube-reinforced composite beams resting on an elastic foundation. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of buckling analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the buckling responses of CNTRC beam are discussed.

Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Rabia, Benferhat;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.257-278
    • /
    • 2017
  • A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.

Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.293-304
    • /
    • 2019
  • In this paper, a general model is developed to predict the distribution of interfacial shear and normal stresses of FG beam reinforced by porous FGM plates under mechanical loading. The beam is assumed to be isotropic with a constant Poisson's ratio and power law elastic modulus through the beam thickness. Stress distributions, depending on an inhomogeneity constant, were calculated and presented in graphicals forms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam, and it is shown that the inhomogeneities play an important role in the distribution of interfacial stresses. The results presented in the paper can serve as a benchmark for future analyses of functionally graded beams strengthened by imperfect varying properties plates. Numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters. The results of this study indicated that the imperfect functionally graded panel strengthening systems are effective in enhancing flexural behavior of the strengthened FGM beams. This research is helpful in understanding the mechanical behaviour of the interface and design of hybrid structures.