• 제목/요약/키워드: IB(In-plane Bending)

검색결과 6건 처리시간 0.022초

304 스테인레스 박강판 IB형 용접이음재의 피로강도 평가 Part 2 : 변형에너지 밀도에 의한 평가 (Fatigue Strength Evaluation on the IB-Type Spot Welded Lap Joint of 304 Stainless Steel Part 2 : Strain energy Density)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.32-37
    • /
    • 1999
  • Since stainless steel plates have good mechanical properties, weldability, appearance and resistance of corrosion, these are traditionally used for vehicles such as the bus and the train. And they are mainly fabricated by spot welding. But fatigue strength of their spot welded joint is considerably influenced by welding conditions as well as geometrical factors. Thus a reasonable and systematic criterion for long life design of spot welded body structure must be established. In this report, strain energy density was analyzed by using 3-dimensional finite element model about the IB-type spot welded lap joint under tension-shear load. Fatigue tests were conducted on them having various thickness, joint angle, lapped length and width. From their results, it was found that fatigue strength of the IB-type spot welded lap joints could be effectively and systematically rearranged by strain energy density at the edge of nugget.

  • PDF

304 스테인리스 박강판 IB형 점용접이음재의 피로강도 평가 Part 1 : 최대 주응력에 의한 평가 (Fatigue Strength Evaluation on the IB-Type Spot-welded Lap Joint of 304 Stainless Steel Part 1 : Maximum Principal Stress)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.25-31
    • /
    • 1999
  • Stainless steel sheets are commonly used for vehicles such as the bus and the train. These are mainly fabricated by spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget. edge of the spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget edge of the spot-welding point. Especially, it is influenced by welding conditions as well as geometrical factors of spot welded joint. Therefore, it is not too much to say that structural rigidity and strength of spot-welded structures is decided by fatigue strength of spot welded lap joint. Thus, it is necessary to establish a reasonable and systematic long life design criterion for the spot-welded structure. In this study, numerical stress analysis was performed by using 3-dimensional finite element model on IB-type spot-welded lap joint of 304 stainless steel sheet under tension-shear load. Fatigue tests were also conducted on them having various thickness, joint angle, lapped length, and width of the plate. From the results, it was found that fatigue strength of IB-type spot-welded lap joints was influenced by its geometrical factors, however, could be systematically rearranged by maximum principal stress ({TEX}$σ_{1max}${/TEX}) at the nugget edge of the spot-welding point.

  • PDF

Fatigue Strength Assessment of Spot-Welded Lap Joint Using Strain Energy Density Factor

  • Sohn, Ilseon;Bae, Dongho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.44-51
    • /
    • 2001
  • One of the recent issues in design of the spot-welded structure such as the automobile body is to develop an economical prediction method of the fatigue design criterion without additional fatigue test. In this paper, as one of basic investigation for developing such methods, fracture mechanical approach was investigated. First, the Model I, Mode II and Mode III, stress intensity factors were analyzed. Second, strain energy density factor (S) synthetically including them was calculated. And finally, in order to decide the systematic fatigue design criterion by using this strain energy density factor, fatigue data of the ΔP-N(sub)f obtained on the various in-plane bending type spot-welded lap joints were systematically re-arranged in the ΔS-N(sub)f relation. And its utility and reliability were verified by the theory of Weibull probability distribution function. The reliability of the proposed fatigue life prediction value at 10(sup)7 cycles by the strain energy density factor was estimated by 85%. Therefore, it is possible to decide the fatigue design criterion of spot-welded lap joint instead of the ΔP-N(sub)f relation.

  • PDF

Fatigue Design of Various Type Spot Welded Lap Joints Using the Maximum Stress

  • Jung, Wonseok;Bae, Dongho;Sohn, Ilseon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.106-113
    • /
    • 2004
  • Recently, a new issue in designing spot welded structures such as automobile and train car bodies is to predict an economical fatigue design criterion. One of the most typical and traditional methods is to use a ΔP-N$\sub$f/ curve. However, since the fatigue data on the ΔP-N$\sub$f/ curve vary according to the welding conditions, materials, geometry of joint and fatigue loading conditions, it is necessary to perform the additional fatigue tests for determining a new fatigue design criterion of spot-welded lap joint having specific dimension and geometry. In this study, the stress distributions around spot welds of various spot welded lap joints such as in-plane bending type (IB type), tension shea. type (TS type) and cross tension type (CT type) were numerically analyzed. Using these results, the ΔP-N$\sub$f/ curves Previously obtained from the fatigue tests for each type were rearranged into the Δ$\sigma$-N$\sub$f/ relations with the maximum stresses at the nugget edge of the spot weld.

잔류응력을 고려한 점용접이음재의 피로설계 (Fatigue Design of Spot Welded Lap Joint Considered Residual Stress)

  • 손일선;배동호;홍정균;이범노
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.743-751
    • /
    • 2000
  • Because welding residual stress is formidable result in electric resistance spot welding process, and it detrimentally affect to fatigue crack initiation and growth at nugget edge of spot welded la p joints, it should be considered in fatigue analysis. Thus, accurate prediction of residual stress is very important. In this study, nonlinear finite element analysis on welding residual stress generated in process of the spot welding was conducted, and their results were compared with experimental data measured by X-ray diffraction method. By using their results, the maximum principal stress considered welding residual stress at nugget edge of the spot welded lap joint subjected to tension-shear load was calculated by superposition method. And, the $\Delta$P- $N_f$ relations obtained through fatigue, tests on the IB-type spot welded lap joints was systematically rearranged with the maximum principal stress considered welding residual stress. From the results, it was found th2at fatigue strength of the IB-type spot welded lap joints could be systematically and more reasonably rearranged by the maximum principal stress($\sigma$1max-res considered welding residual stress at nugget edge of the spot welding point.

전기저항 점용접부의 용접잔류응력 해석에 관한 연구 (A Study on the Welding Residual Stress Analysis of the Spot Welding Point)

  • 손일선;배동호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1999년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.233-236
    • /
    • 1999
  • The welding residual stress should be considered in fatigue stress analysis because it develope during the process of the electric resistance spot welding and it causes bad affect on the fatigue crack initiation and growth at nugget edge of spot welded points. Therefore the accurate estimation of residual stress is crucial. In this study, nonlinear finite element analysis on welding residual stress generated during the process of the spot welding was conducted, and their results were compared with the experimental data measured by X-ray diffraction method. From the results, it was found that welding residual stress existed as tension in the nugget center and as compression around the nugget edge.

  • PDF