• Title/Summary/Keyword: I.Q.

Search Result 1,721, Processing Time 0.026 seconds

Performance Test of Paylad Data Receiving Equipment for STSAT-2 (과학기술위성 2호 탑재체데이터 수신시스템의 성능 시험)

  • Lee, Jong-Ju;Seo, In-Ho;Lee, Chol;Oh, Chi-Wook;Kim, Kyung-Hee;Park, Sung-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.347-352
    • /
    • 2007
  • This paper describes the design and implementation of PFM(Proto Flight Model, PFM) of DRE(Data Receiving Equipment, DRE) for Science and Technology Satellite 2(STSAT-2) and the results of integration performance test. DRE components are X-band receiver, DCE(Data Combine Equipment, DCE) and RAC(Receiving and Archiving Computer, RAC). DCE consists of I&Q data combiner and ECL signal distributor. RAC consists of DRC(Data Receiving Card) and ST2RAS(STSAT-2 Receiving and Archinving Software). X-band receiver receives 10Mbps QPSK I, Q satellite data and sends the data to DCE. DRC stores the I&Q combine data from DCE to RAID. The pre-processing program sorts and stores to satellite status data and payload data. The performance of DRE in the functional and space environments test satisfies the requirements of STSAT-2.

Nurses' Image perceived by College Nursing Students : Q-Methodological (간호대학생의 간호사 이미지에 대한 인식 : Q 방법론 적용)

  • Oh, Seung Eun;Lee, Hye-Jin;Lee, Joo Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.192-199
    • /
    • 2018
  • This study was conducted to examine the nursing image types and characteristics of nurses perceived by nursing college students by applying the Q methodology and to manage effective nursing education and clinical education. The survey was conducted from May 15, 2017 to May 24, 2017, and the data collection for the Q population composition was based on in-depth interviews and literature review. First, nursing college students were searched for convenience and 158 statements were obtained based on open questionnaires and 64 statements extracted from in-depth interviews and after a literature review. To select the Q sample, Q population was categorized by taking several repeated readings. Five categories were developed from these processes: quality and role, social awareness, professionalism, uniqueness, and working conditions. The selected statements were reviewed and revised by experts and 35 Q samples were finally selected. Based on this, 46 students in one nursing college classified 35 Q statements, and analyzed data using PC QUANL program. The results of the study were as follows: 2) Type I-1: Job related anxiety, Type I-2: cold and professional, Type II-1: Complaint of treatment and Type II-2: Profession-Unacceptable. These results are expected to provide useful data for understanding the characteristics of nurses' images and provide data enabling development of image improvement strategies of nursing education and clinical education.

Polyphase I/Q Network and Active Vector Modulator Based Beam-Forming Receiver For UAV Based Airborne Network (UAV 공중 네트워크를 위한 손실 없는 Polyphase I/Q 네트워크 및 능동 벡터 변조기 기반 빔-포밍 수신기)

  • Jung, Won-jae;Hong, Nam-pyo;Jang, Jong-eun;Chae, Hyung-il;Park, Jun-seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1566-1573
    • /
    • 2016
  • This paper presents a beam-forming receiver with polyphase In-phase/Quadrature-phase (I/Q) network for airborne communication. In beam-forming receiver, the insertion loss (IL) difference between input path increases the receiver noise figure (NF). The major element for generating IL difference is the impedance variation of phase shifter. In order to maintain a constant IL in every phase, this paper propose a lossless polyphase I/Q network based beam-forming receiver. The proposed lossless polyphase I/Q network has low Q-factor and high impedance for drive back-end VGA (Variable gain amplifier) block with low insertion loss. The 2-stage VGA controls in-phase and quadrature-phase amplitude level for vector summation. The proposed beam-forming receiver prototype is fabricated in TSMC $0.18{\mu}m$ CMOS process. The prototype cover the $360^{\circ}$ with $5.6^{\circ}$ LSB. The average RMS phase error and amplitude error is approximately $1.6^{\circ}$ and 0.3dB.

Let's Think about My Partner: Using the Subjective Study (나의 배우자를 생각해보다: 주관성 연구를 활용하여)

  • Lee, Doh-Hee;Kim, Da-Yo;Park, Haeng-Nim
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.320-329
    • /
    • 2018
  • This study was conducted to explore and classify the types of the subjectivity on the perception of the spouse using Q methodology. In this study, 42 Q statements were selected as the Q sample through interview. 42 people who married person with their spouse as P samples were forced to distribute 42 Q samples on 9 point scale. The collected data was analyzed using PC QUANL program. The results of the analysis are defined as two distinctive types. First, Type I(n=36) was defined as 'Love-Ties Type' and Type II(n=6) as 'Skein of thread-Person in charge Type'. Type I perceived their spouse as fate and ties emphasizing love for their spouse. And Type II recognized their spouse as someone requires effort like unravelling a thread and a person to be responsible for. In the result of this study, structural differences between the two types were found. And it will be used as a basic resource to support a healthy and happy marriage.

Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data (해양부이 자료를 이용한 황해 남동부 해역 표층 열속 산출)

  • Kim, Sun-Bok;Chang, Kyung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.169-179
    • /
    • 2014
  • Monthly mean surface heat fluxes in the southeastern Yellow Sea are calculated using directly observed airsea variables from an ocean buoy station including short- and longwave radiations, and COARE 3.0 bulk flux algorithm. The calculated monthly mean heat fluxes are then compared with previous estimates of climatological monthly mean surface heat fluxes near the buoy location. Sea surface receives heat through net shortwave radiation ($Q_i$) and loses heat as net longwave radiation ($Q_b$), sensible heat flux ($Q_h$), and latent heat flux ($Q_e$). $Q_e$ is the largest contribution to the total heat loss of about 51 %, and $Q_b$ and $Q_h$ account for 34% and 15% of the total heat loss, respectively. Net heat flux ($Q_n$) shows maximum in May ($191.4W/m^2$) when $Q_i$ shows its annual maximum, and minimum in December ($-264.9W/m^2$) when the heat loss terms show their annual minimum values. Annual mean $Q_n$ is estimated to be $1.9W/m^2$, which is negligibly small considering instrument errors (maximum of ${\pm}19.7W/m^2$). In the previous estimates, summertime incoming radiations ($Q_i$) are underestimated by about $10{\sim}40W/m^2$, and wintertime heat losses due to $Q_e$ and $Q_h$ are overestimated by about $50W/m^2$ and $30{\sim}70W/m^2$, respectively. Consequently, as compared to $Q_n$ from the present study, the amount of net heat gain during the period of net oceanic heat gain between April and August is underestimated, while the ocean's net heat loss in winter is overestimated in other studies. The difference in $Q_n$ is as large as $70{\sim}130W/m^2$ in December and January. Analysis of long-term reanalysis product (MERRA) indicates that the difference in the monthly mean heat fluxes between the present and previous studies is not due to the temporal variability of fluxes but due to inaccurate data used for the calculation of the heat fluxes. This study suggests that caution should be exercised in using the climatological monthly mean surface heat fluxes documented previously for various research and numerical modeling purposes.

A Study on the Initial Maximum Value of Heat Flux, $q_{max}$ of Wool Fabrics (Part I) - The correlation between $q_{max}$ and thermal conductivity, thermal transmittance, surface air cavity of wool fabrics - (양모 복지의 초기열류속최대치($q_{max}$)에 관한 연구( I ) -열전도도, 열통과성, 표면기공도와의 상관성을 중심으로-)

  • Choi Suk Chul;Jung Jin Soun;Chun Tae il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.4 s.40
    • /
    • pp.367-372
    • /
    • 1991
  • In this study, we discussed about the factors effected upon the initial maximum value of heat flux ($q_{max}$). Thermal conductivity, thermal transmittance and surface air cavity of wool fabrics were examind and their correlation to the $q_{max}$ was studied. The factors were examined which had an effect upon the $q_{max}$ of an objective measure of warm/cool feeling. It was simulated by Thermo-Labo apparatures. We selected twenty sorts of pure wool woven fabrics for men's fall -winter cloth (all Wool). The conclusions are as follows; 1. There was not a certain correlation between the $q_{max}$ and the thermal conductivity of wool fabric. 2. When the fabrics touched on the copper plates, the thickness of wool fabric had a negative correlation to the $q_{max}$. The thermal transmittance had a positive correlation. Both of them had a good correlation to the $q_{max}$. 3. As a major factor, the thickness of fabric effected on the $q_{max}$.

  • PDF

ON THE COHOMOLOGICAL DIMENSION OF FINITELY GENERATED MODULES

  • Bahmanpour, Kamal;Samani, Masoud Seidali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.311-317
    • /
    • 2018
  • Let (R, m) be a commutative Noetherian local ring and I be an ideal of R. In this paper it is shown that if cd(I, R) = t > 0 and the R-module $Hom_R(R/I,H^t_I(R))$ is finitely generated, then $$t={\sup}\{{\dim}{\widehat{\hat{R}_p}}/Q:p{\in}V(I{\hat{R}}),\;Q{\in}mAss{_{\widehat{\hat{R}_p}}}{\widehat{\hat{R}_p}}\;and\;p{\widehat{\hat{R}_p}}=Rad(I{\wideha{\hat{R}_p}}=Q)\}$$. Moreover, some other results concerning the cohomological dimension of ideals with respect to the rings extension $R{\subset}R[X]$ will be included.

PROJECTIONS OF ALGEBRAIC VARIETIES WITH ALMOST LINEAR PRESENTATION I

  • Ahn, Jeaman
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2019
  • Let X be a reduced closed subscheme in ${\mathbb{P}}^n$ and $${\pi}_q:X{\rightarrow}Y={\pi}_q(X){\subset}{\mathbb{P}}^{n-1}$$ be an isomorphic projection from the center $q{\in}{\mathbb{P}}^n{\backslash}X$. Suppose that the minimal free presentation of $I_X$ is of the following form $$R(-3)^{{\beta}2,1}{\oplus}R(-4){\rightarrow}R(-2)^{{\beta}1,1}{\rightarrow}I_X{\rightarrow}0$$. In this paper, we prove that $H^1(I_X(k))=H^1(I_Y(k))$ for all $k{\geq}3$. This implies that Y is k-normal if and only if X is k-normal for $k{\geq}3$. Moreover, we also prove that reg(Y) ${\leq}$ max{reg(X), 4} and that $I_Y$ is generated by homogeneous polynomials of degree ${\leq}4$.

Complete Moment Convergence of Moving Average Processes Generated by Negatively Associated Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.507-513
    • /
    • 2010
  • Let {$X_i,-{\infty}$ < 1 < $\infty$} be a doubly infinite sequence of identically distributed and negatively associated random variables with mean zero and finite variance and {$a_i,\;-{\infty}$ < i < ${\infty}$} be an absolutely summable sequence of real numbers. Define a moving average process as $Y_n={\sum}_{i=-\infty}^{\infty}a_{i+n}X_i$, n $\geq$ 1 and $S_n=Y_1+{\cdots}+Y_n$. In this paper we prove that E|$X_1$|$^rh$($|X_1|^p$) < $\infty$ implies ${\sum}_{n=1}^{\infty}n^{r/p-2-q/p}h(n)E{max_{1{\leq}k{\leq}n}|S_k|-{\epsilon}n^{1/p}}{_+^q}<{\infty}$ and ${\sum}_{n=1}^{\infty}n^{r/p-2}h(n)E{sup_{k{\leq}n}|k^{-1/p}S_k|-{\epsilon}}{_+^q}<{\infty}$ for all ${\epsilon}$ > 0 and all q > 0, where h(x) > 0 (x > 0) is a slowly varying function, 1 ${\leq}$ p < 2 and r > 1 + p/2.

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES

  • Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.323-334
    • /
    • 2008
  • We define injective and projective representations of quivers with two vertices with n arrows. In the representation of quivers we denote n edges between two vertices as ${\Rightarrow}$ and n maps as $f_1{\sim}f_n$, and $E{\oplus}E{\oplus}{\cdots}{\oplus}E$ (n times) as ${\oplus}_nE$. We show that if E is an injective left R-module, then $${\oplus}_nE{\Longrightarrow[50]^{p_1{\sim}p_n}}E$$ is an injective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $p_i(a_1,a_2,{\cdots},a_n)=a_i,\;i{\in}\{1,2,{\cdots},n\}$. Dually we show that if $M_1{\Longrightarrow[50]^{f_1{\sim}f_n}}M_2$ is an injective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are injective left R-modules. We also show that if P is a projective left R-module, then $$P\Longrightarrow[50]^{i_1{\sim}i_n}{\oplus}_nP$$ is a projective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $i_k$ is the kth injection. And if $M_1\Longrightarrow[50]^{f_1{\sim}f_n}M_2$ is an projective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are projective left R-modules.

  • PDF