• Title/Summary/Keyword: I-beam concrete slab

Search Result 32, Processing Time 0.026 seconds

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (I) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(I) - 해석모델 및 현장실험 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.123-131
    • /
    • 2000
  • In this study, both experimental and analytical study for behavior of the existing composite steel box girder bridges, constructed along with the procedure of continuous placing slab, are conducted to establish the validity of the proposed model. The layer approach is adopted to determine the equilibrium condition in a section to consider the different material properties and concrete cracking across the sectional depth, and the beam element stiffness is constructed on the basis of the assumed displacement field formulation and the 3-points Gaussian Integration. In addition, the effects of creep and shrinkage of concrete for time-dependent behavior of the bridge are taken into consideration. Finally, both analytical and experimental results are compared.

  • PDF

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Shrinkage Stress Analysis of Concrete Slab in Multi-Story Building Considering Construction Sequence (시공단계를 고려한 고층건물 콘크리트 슬래브의 건조수축 응력해석)

  • 김한수;정종현;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.457-465
    • /
    • 2001
  • Shrinkage strains of concrete slab in multi-story building are restrained by structural members such as columns or walls, then can induce cracks due to excessive shrinkage stress over tensile strength of member. In this study, a shrinkage stress analysis method of concrete slab in multi-story building considering not only material properties such as shrinkage, creep and reinforcement effect but also construction sequence is proposed. Tensile stresses of slab due to shrinkage are calculated by converting shrinkage strains into equivalent temperature gradients, creep that can release shrinkage stress can be considered by replacing the modulus of elasticity of concrete, Ec , to the effective secant modulus of elasticity of concrete, E$\_$eff/ Reinforcements are also considered by modeling them as equivalent beam elements in FEM program. Results of step by step analysis reflecting construction sequence summed up to calculate stresses of the whole building considering that shrinkage stresses of the building come from the difference of shrinkage between i-th floor and (i-1)-th floor, named as effecitive shrinkage, and it can be varied by construction sequence. The results of 10-story example building show that shrinkage stresses of lower floors are greater than those of upper floors, that is, stresses of lower floors(1∼2FI.) exceed modulus of rupture of concrete, but stress ratios of higher floors are in the range of 27.9∼92.8%.

Experimental Evalution of Structural Behavior on SRC type TEC-BEAM to RC Column Connection (SRC형 TEC-BEAM과 RC기둥 접합부 구조적 거동의 실험적 평가)

  • Ju, Young Kyu;Kim, Do Hyun;Chung, Kwang Ryang;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.463-470
    • /
    • 2002
  • The TEC-Beam system is a composite beam consisting of structural tee, precast concrete, and cast-in-site reinforced concrete slab. The preliminary test of the proposed system was performed for simple beams, showing good behavior. However, for the field application of the system. TEC-Beam - RC column connection was required to produce a mechanism that transfers the force occurring in the lower part of the TEC-Beam. Thus, this study developed a connection mechanism that transfers the force occurring in the lower part of the TEC-Beam. Thus, this study developed a connection wherein the section of the TEC-Beam was enlarged and the lower part reinforced. Two setups of the proposed system were experimentally investigated. using the anchorage length of reinforcement., i.e., length of the increased section, as test parameter. It could be concluded from the result that the proposed system shows good structural behavior, with potential applicability in the field.

Behavior and resistance of truss-type shear connector for composite steel-concrete beams

  • Lima, Jerfson M.;Bezerra, Luciano M.;Bonilla, Jorge;Silva, Ramon S.Y.R.C.;Barbosa, Wallison C.S.
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.569-586
    • /
    • 2020
  • The behavior of composite steel-concrete beams depends on the transmission of forces between two parts: the concrete slab and the steel I-beam. The shear connector is responsible for the interaction between these two parts. Recently, an alternative shear connector, called Truss Type connector, has been developed; it aligns efficient structural behavior, fast construction and implementation, and low cost when compared to conventional connectors applied in composite structures. However, there is still a lack of full understanding of the mechanical behavior of the Truss Type connector, due to its novelty. Thus, this study aims to analyze the influence of variation of geometric and physical parameters on the shear resistance of the Truss Type connector. In order to investigate those parameters, a non-linear finite element model, able to simulate push-out tests of Truss Type connectors, was specifically developed and validated with experimental results. A thorough parametric study, varying the height, the angle between rods, the diameter, and the concrete strength, was conducted to evaluate the shear resistance of the Truss Type connector. In addition, an equation to predict the resistance of the original Truss Type shear connector was proposed.

Splitting of reinforced concrete panels under concentrated loads

  • Foster, Stephen J.;Rogowsky, David M.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.803-815
    • /
    • 1997
  • It is well understood that concentrated forces applied in the plane of a beam or panel (such as a wall or slab) lead to splitting forces developing within a disturbed region forming beyond the bearing zone. In a linearly elastic material the length of the disturbed region is approximately equal to the depth of the member. In concrete structures, however, the length of the disturbed region is a function of the orthotropic properties of the concrete-steel composite. In the detailing of steel reinforcement within the disturbed regions two limit states must be satisfied; strength and serviceability (in this case the serviceability requirement being acceptable crack widths). If the design requires large redistribution of stresses, the member may perform poorly at service and/or overload. In this paper the results of a plane stress finite element investigation of concentrated loads on reinforced concrete panels are presented. Two cases are examined (i) panels loaded concentrically, and (ii) panels loaded eccentrically. The numerical investigation suggests that the bursting force distribution is substantially different from that calculated using elastic design methods currently used in some codes of practice. The optimum solution for a uniformly reinforced bursting region was found to be with the reinforcement distributed from approximately 0.2 times the effective depth of the member ($0.2D_e$) to between $1.2D_e$ and $1.6D_e$. Strut and tie models based on the finite element analyses are proposed herein.

Shielding Effectiveness of Magnetite Heavy Concrete on Cobalt-60 Gamma-rays

  • Lim, Yong-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-75
    • /
    • 1971
  • The gamma-ray shielding effects of magnetite concretes have been measured using a broad beam Co-60 gamma-ray source. Mathematical formulae for a trans-mission ratio-to-shield thickness relation were derived from the attenuation curve obtained experimentally and are I (x) = I (ο) exp(-$\mu$X) exp(1.03$\times$10$^{-1}$ X-3.38$\times$10$^{-3}$ X$^2$+5.29$\times$10$^{-5}$ X$^3$) when X< 20 cm, I (x) =I (ο) exp(-$\mu$X) exp(4.66$\times$10$^{-2}$ X+2.12$\times$10$^{-1}$ ) when X>20 cm. Here I (x) is radiation intensity after passing through a thickness X of absorber, I(o) is the initial radiation intensity, $\mu$ is the linear attenuation coefficient of magnetite concrete and is given by (0.0532$\rho$+ 0.0083)$^{4)}$ $cm^{-1}$ / in accordance with an earlier study, and X is the thickness of absorber. In addition, a model shield which is a rectangular magnetite concrete box with walls of 8cm thickness walls and internal demensions of 40$\times$40$\times$40 cm was constructed and its shielding effect has been measured. The emergent radiation flux appears to be greater with this configuration than with a slab shield of equal thickness.

  • PDF

Temporary Stabilizing Measures during Construction of a Steel Composite 2-Edge Girder Cable Stayed Bridge (강합성 2주형 사장교의 시공중 내풍 안정성 확보 방안 연구)

  • Kim, Young-Min;Kim, Dae-Young
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.63-66
    • /
    • 2008
  • The bridge deck section composed of a concrete slab resting on two I-beam girders are known to be susceptible to flutter instability and vortex shedding. Moreover, the cable stayed bridge in construction is more vulnerable to wind rather than in service when the free cantilever construction method is applied. This paper describes the effect of the dynamic wind loads on the bridge during construction and the effect of alternative temporary stabilizing measures. Therefore, a series of wind tunnel tests and numerical analysis were carried out to determine if any countermeasures were required.

  • PDF

Determination Method for Longitudinal Initial Prestress in Composite Beams with Precast Decks I: Simply Supported Beams (프리캐스트 바닥판을 사용한 강합성보의 교축방향 초기 프리스트레스 산정방법 I : 단순보)

  • Cho, Sun-Kyu;Lee, Jong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.15-24
    • /
    • 2008
  • This paper presents the analytical method for the long-term behavior of simply supported composite beams with precast decks prestressed in the longitudinal direction. The objectives of time-dependent analysis are to estimate losses of prestress on the concrete slab and long-term deflection due to creep and shrinkage of concrete, relaxation of prestressing steel. Also, the time-dependent analysis was carried out using the presented analytical method to evaluate the effects of several parameters on the long-term behavior of composite bridge with precast deck, including geometrical shapes of composite beams, compressive strength of concrete and magnitude of initial prestress. The results of the analysis indicated that, in the effects of geometrical shapes of composite beams, the main parameters affecting the losses of prestress and the long-term deflection were the cross sectional area and the moment of inertia of steel beam, respectively. Finally, the determination method for the required initial prestress was proposed by evaluation of the loss characteristics due to shrinkage and creep of concrete.