• 제목/요약/키워드: I-Pin

검색결과 267건 처리시간 0.028초

구리선 도파로를 이용한 THz 전자기파의 결합 특성 (The Coupling Characteristics of THz Electromagnetic Wave using Copper Wire Waveguide)

  • 전태인;지영빈
    • 한국광학회지
    • /
    • 제17권3호
    • /
    • pp.290-295
    • /
    • 2006
  • 전기전도도가 높은 구리선 도파로에 THz 전자기파의 결합은 THz 유선방식의 전파에 있어 테라파의 크기 및 주파수 특성을 결정짓는 중요한 요인 중의 하나이다. 본 연구에서는 직경 $480{\mu}m$, 길이 23 cm의 구리선 도파로에 테라파를 전파시켜 1 THz 주파수 범위를 가진 THz 펄스를 측정하였다. 도파로와 transmitter chip 또는 receiver chip 사이의 공극 간격을 최대 $275{\mu}m$까지 확대하여 송신부와 수신부의 결합 특성을 접촉상태와 비교 분석하였다. 실험결과 송신부의 결합민감도가 수신부보다 약 3배 이상 높게 나타났으며 수신부에서 도파로와 receiver사이의 공극을 통하여 테라파가 공기 중으로 전파됨을 알 수 있었다. 또한 구리선 도파로에 pin hole를 위치시켜 pin hole의 직경에 따른 테라파의 변화를 연구하였으며 대부분의 THz field는 구리선 표면에 분포됨을 확인할 수 있었다.

Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions

  • Magni, A.;Pizzocri, D.;Luzzi, L.;Lainet, M.;Michel, B.
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2395-2407
    • /
    • 2022
  • The sodium-cooled fast reactor is among the innovative nuclear technologies selected in the framework of the development of Generation IV concepts, allowing the irradiation of uranium-plutonium mixed oxide fuels (MOX). A fundamental step for the safety assessment of MOX-fuelled pins for fast reactor applications is the evaluation, by means of fuel performance codes, of the integral thermal-mechanical behaviour under irradiation, involving the fission gas behaviour and release in the fuel-cladding gap. This work is dedicated to the performance analysis of an inner-core fuel pin representative of the ASTRID sodium-cooled concept design, selected as case study for the benchmark between the GERMINAL and TRANSURANUS fuel performance codes. The focus is on fission gas-related mechanisms and integral outcomes as predicted by means of the SCIANTIX module (allowing the physics-based treatment of inert gas behaviour and release) coupled to both fuel performance codes. The benchmark activity involves the application of both GERMINAL and TRANSURANUS in their "pre-INSPYRE" versions, i.e., adopting the state-of-the-art recommended correlations available in the codes, compared with the "post-INSPYRE" code results, obtained by implementing novel models for MOX fuel properties and phenomena (SCIANTIX included) developed in the framework of the INSPYRE H2020 Project. The SCIANTIX modelling includes the consideration of burst releases of the fission gas stored at the grain boundaries occurring during power transients of shutdown and start-up, whose effect on a fast reactor fuel concept is analysed. A clear need to further extend and validate the SCIANTIX module for application to fast reactor MOX emerges from this work; nevertheless, the GERMINAL-TRANSURANUS benchmark on the ASTRID case study highlights the achieved code capabilities for fast reactor conditions and paves the way towards the proper application of fuel performance codes to safety evaluations on Generation IV reactor concepts.

시뮬레이션을 통한 p-i-n 비정질 실리콘 박막 태양전지의 최적화 (Optimization of p-i-n amorphous silicon thin film solar cells using simulation)

  • 박승만;이영석;정성욱;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.436-436
    • /
    • 2009
  • 현재 상용화되어 있는 결정질 태양전지의 경우 높은 실리콘 가격으로 인해 저가화에 어려움을 격고 있다. 따라서 태양전지 저가화의 한 방법으로 박막태양전지가 주목을 받고 있다. P-I-N 구조의 박막태양전지에서 각 층의 thickness, activation energy, energy bandgap은 고효율 달성을 위한 중요한 요소이다. 본 논문에서는 박막태양전지 P-I-N layer의 가변을 통하여 고효율을 달성하기 위한 simulation을 수행하였다. 가변 조건으로는 p-layer의 thickness, activation energy 그리고 energy bandgap을 단계별로 변화시켰고 i-layer는 thickness를 n-layer는 thickness와 activation energy를 가변하여 최적의 조건을 찾아 분석하였다. 최종 simulation 결과 p-layer의 thickness 5nm, activation energy 0.3eV 그리고 energy bandgap 1.8eV에서, i-layer thickness 400nm, n-layer thickness 30nm, activation energy 0.2eV에서 최고 효율 11.08%를 달성하였다.

  • PDF

i-layer 두께와 back reflect layer 유무가 미세결정 실리콘 박막태양전지에 미치는 영향 (Optimization of microcrystaliline silicon thin film solar cells using simulation)

  • 박승만;이영석;정성욱;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.437-437
    • /
    • 2009
  • 현재 상용화되어 있는 결정질 태양전지의 경우 높은 실리콘 가격으로 인해 저가화에 어려움을 격고 있다. 따라서 태양전지 저가화의 한 방법으로 박막태양전지가 주목을 받고 있다. P-I-N 구조의 박막태양전지에서 I-layer 각 층의 thickness, activation energy, energy bandgap은 고효율 달성을 위한 중요한 요소이다. 본 논문에서는 박막태양전지 P-I-N layer의 가변을 통하여 고효율을 달성하기 위한 simulation을 수행하였다. 가변 조건으로는 p-layer의 thickness, activation energy 그리고 energy bandgap을 단계별로 변화시켰고 i-layer는 thickness를 n-layer는 thickness와 activation energy를 가변하여 최적의 조건을 찾아 분석하였다. 최종 simulation 결과 p-layer의 thickness 5nm, activation energy 0.3eV 그리고 energy bandgap 1.8eV에서, i-layer thickness 400nm, n-layer thickness 30nm, activation energy 0.2eV에서 최고 효율 11.08%를 달성하였다.

  • PDF

극저온 지지구조물을 위한 CFRP 적층판의 핀 체결부 강도특성 연구 (A Study on the Strength Characteristics of the Pin Jointed CFRP Composites for Cryogenic Supporting Structure)

  • 허남일;김재훈;이영신;김학근;박주식;권면
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2002
  • Fundamental failure mode in a laminated composite pinned joint is proposed to assess damage resulting from stress concentration in the plate. The joint area is a region with stress concentrations thus a complicated stress state exists. The modeling of damage in a laminated composite pinned joint presents many difficulties because of the complexity of the failure process. In this study, the effect on the bearing strength of the pin jointed Carbon Fiber Reinforced Plastics (CFRP) composites for magnet support structure of KSTAR tokamak with various parameters such as edge distance to diameter, width to diameter, and the temperature of $23^{\circ}C$, $-76^{\circ}C$, and $-196^{\circ}C$ was examined by comparing the experimental results with finite element analysis.

  • PDF

중첩된 알루미늄 5052 합금판재의 전기저항가열 마찰교반점용접에 관한 연구 (Electric Resistance Heated Friction Stir Spot Welding of Overlapped Al5052 Alloy Sheets)

  • 김태현;장민수;진인태
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.256-263
    • /
    • 2015
  • Electric resistance spot welding has been used to join overlapped steel sheets in automotive bodies. Recently to reduce weight in automotive vehicles, non-ferrous metals are being used or considered in car bodies for hoods, trunk lids, doors parts, etc. Various welding processes such as laser welding, self-piercing rivet, friction stir welding are being used. In the current study, a new electric resistance heated friction stir spot welding is suggested for the spot welding of non-ferrous metals. The welding method can be characterized by three uses of heat -- electric resistance heating, friction stir heating and conduction heating of steel electrodes -- for the fusion joining at the interfacial zone between the two sheets. The welding process has variables such as welding current, diameter of the steel electrodes, revolutions per minute (rpm) of the friction stir pin, and the insert depth of the stir pin. In order to obtain the optimal welding variables, which provide the best welding strength, many experiments were conducted. From the experiments, it was found that the welding strength could be reached to the required production value by using an electrode diameter of 10mm, a current of 7.6kA, a stirring speed of 400rpm, and an insert depth of 0.8mm for the electric resistance heated friction stir spot welding of 5052 aluminum 1.5mm sheets.

Brass fillers in friction composite materials: Tribological and brake squeal characterization for suitable effect evaluation

  • Kchaou, Mohamed;Sellami, Amira;Abu Bakar, Abd. Rahim;Lazim, Ahmad Razimi Mat;Elleuch, Riadh;Kumar, Senthil
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.939-952
    • /
    • 2015
  • In this paper, brake pad performance of two organic matrix composites namely, Sample 1 (contains no brass filler) and Sample 2 (contains 1.5% brass filler), is studied based on tribological and squeal noise behavior. In the first stage, a pin-on-disc tribometer is used to evaluate the frictional behavior of the two pads. On the following stage, these pads are tested on squeal noise occurrence using a drag-type brake dynamometer. From the two type of tests, the results show that; (i) brass fillers play a dual role; firstly as reinforcing element of the brake pad providing primary contact sites, and secondly as solid lubricant by contributing to the formation of a layer of granular material providing velocity accommodation between the pad and the disc; (ii) brass fillers contribute to friction force stabilization and smooth sliding behavior; (iii) the presence of small weight quantity of brass filler strongly contributes to squeal occurrences; (iv) there is close correlation between pin-on-disc tribometer and brake dynamometer tests in terms of tribological aspect.

An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling

  • Zou, Jin-Feng;Wei, Xing-Xing
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.59-69
    • /
    • 2018
  • This study focused on the mechanical and hydraulic characteristics of underwater tunnels based on Mohr-Coulomb (M-C), Hoek-Brown (H-B) and generalized H-B failure criteria. An improved approach for calculating stress, displacement and plastic radius of the circular tunnel considering hydraulic-mechanical coupling was developed. The innovation of this study was that the radius-incremental-approach was reconstructed (i.e., the whole plastic zone is divided into a finite number of concentric annuli by radius), stress and displacement of each annulus were determined in terms of numerical method and Terzaghi's effective stress principle. The validation of the proposed approach was conducted by comparing with the results in Brown and Bray (1982) and Park and Kim (2006). In addition, the Rp-pin curve (plastic radius-internal supporting pressure curve) was obtained using the numerical iterative method, and the plastic radius of the deep-buried tunnel could be obtained by interpolation method in terms of the known value of internal supporting pressure pin. Combining with the theories in Carranza and Fairhurst (2000), the improved technique for assessing the reliability of the tunnel support was proposed.

조선시대 소규표(小圭表)의 개발 역사와 구조적 특징 (A DEVELOPMENT HISTORY AND STRUCTURAL FEATURE OF SOGYUPYO IN THE JOSEON DYNASTY)

  • 민병희;김상혁;이기원;안영숙;이용삼
    • 천문학논총
    • /
    • 제26권3호
    • /
    • pp.129-140
    • /
    • 2011
  • In this paper, we have studied Sogyupyo (小圭表, small noon gnomon) of the Joseon dynasty. According to the Veritable Records of King Sejong (世宗, 1418 - 1450), Daegyupyo (大圭表, large noon gnomon) with a height of 40-feet [尺] was constructed by Jeong, Cho (鄭招) and his colleagues in 1435, and installed around Ganuidae (簡儀臺, platform of Ganui). On the contrary, the details of Sogyupyo are unknown although the shadow length measurements by Daegyupyo and Sogyupyo are found on the Veritable Records of King Myeongjong (明宗, 1545 - 1567). By analysing historical documents and performing experiments, we have investigated the construction details of Sogyupyo including its development year, manufacturer, and installation spot. We have found that Sogyupyo would be manufactured by King Sejong in 1440 and placed around Ganuidae. And Sogyupyo would be five times smaller than Daegyupyo, i.e., 8-feet. On the basis of experiments, we suggest that although it is smaller, Sogyupyo was equipped with a bar [橫梁] and a pin-hole projector [影符] like Daegyupyo in order to produce the observation precision presented in the Veritable Record of King Myeongjong.

연료전지차 스택 내 국부적 수소 부족에 기인한 셀 역전압 거동 모사에 대한 연구 (A Study to Simulate Cell Voltage-Reversal Behavior Caused by Local Hydrogen Starvation in a Stack of Fuel Cell Vehicle)

  • 박지연;임세준;한국일;홍보기
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.311-319
    • /
    • 2013
  • A clear understanding on cell voltage-reversal behavior due to local hydrogen starvation in a stack is of paramount importance to operate the fuel cell vehicle (FCV) stably since it affects significantly the cell performance and durability. In the present study, a novel experimental method to simulate the local cell voltage-reversal behavior caused by local hydrogen starvation, which typically occurs only one or several cells out of several hundred cells in a stack of FCV, has been proposed. Contrary to the conventional method of overall fuel starvation, the present method of local hydrogen starvation caused the local cell voltage-reversal behavior in a stack very well. Degradation of both membrane electrode assembly (i.e., pin-hole formation) and gas diffusion layer due to an excessive exothermic heat under voltage-reversal condition was also observed clearly.