• Title/Summary/Keyword: I-PD control

Search Result 108, Processing Time 0.024 seconds

The design of the expanded I-PD Controller with the Neuro-precompensator (신경망 전치보상기를 갖는 확대 I-PD제어기의 설계)

  • 하홍곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.619-625
    • /
    • 2000
  • A many control techniques have been proposed in order to improve the control performance of the discrete-time domain control system. In the position control system, the output of a controller is generally used as the input of a plant but the undesired noise is included in the output of a controller. Therefore there is a need to used a precompensator for rejecting the undesired noise. In this paper, The expanded I-PD control system with a precompensator is constructed. The precompensator and I-PD controller are designed by a neural network and these coefficients are changed automatically to be a desired response of system when the response characteristic of system is changed under a condition.

  • PDF

An Analytical Study on Control Algorithm for the Precise Position Control of the Actuator System (구동장치의 정밀한 위치제어를 위한 구동제어기법에 대한 해석적 연구)

  • Ahn, Wongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • Using a actuator to which the motor and the gear is applied to the I-PD control method and a dual-loop system to carry out precise position control. I-PD control algorithm performs an operation to reduce the overshoot in the transient response. Accordingly, the actuator obtains a precise position tracking result. Also it utilizes two sensors and dual loops. It reduces the adverse effect on the precise position control that may occur by the end play of the gear train. In this paper, we uses the actuator model applying the BLDC motor and gear in order to determine the position tracking result by the dynamic characteristic change. It was verified by the simulation results.

PD+I Fuzzy Controller Using Error-Accumulating Applying Factor (오차적분 적용계수를 이용한 PD+I 퍼지제어기)

  • Chun, Kyung-Han;Lee, Yun-Jung;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.193-198
    • /
    • 2002
  • In this paper, we Propose a PD+I fuzzy controller using an error-accumulating applying factor. In fuzzy control, analytical study was done formerly, in which fuzzy control can be classified by PD type and PI type, and also the study for getting merits of both types was done, too. But the mixed type has a complex structure and many parameters. The proposed fuzzy controller is 2-input 2-out-put and PD type fuzzy control is used as a basic structure. And the proposed controller annihilates a steady-state error and improves transient responses because of using the error-accumulating applying factor which is determined in the real time along the current state of controlled process. Futhermore it is easy to tune the system because of decreasing the number of scaling factors and the I type controller with resetting resolves the integral wind-up problem. Finally we apply the proposed scheme to various plants and show the performance betterment.

The Design of a Pre-Compensator for the Model-Following Control in the I-PD Control System (I-PD 제어계에서 모델추종제어를 위한 전치보상기의 설계)

  • Ha, Hong-Gon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2004
  • Many control techniques have been proposed in order to improve the control performance in the control system. In the feedback control system the output of controller is generally used as the input of a plant But the undesired noise is included in the output of a controller. Therefore, there is a need to use a precompensator for rejecting the undesired noise and improving the response characteristic of a system. In this paper, the design method of a precompensator is proposed for the model following control in the I-PD control system. The proposed precompensator is implemented with a neural network. The games of a precompensator are adjusted automatically to obtain a desired response of a system when the response characteristic of a system is changed under a condition.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.

Improvement of Dynamic Characteristic of LDM by Using I-PD Algorithm (외란에 강인한 I-PD 제어에 의한 LDM의 동특성 개선)

  • Kim, S.W.;Baek, S.H.;Yoon, S.Y.;Myung, N.Y.;Chang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.754-756
    • /
    • 2000
  • In this paper, the I-PD control algorithm using the coefficient diagram method(CDM) controller design of the Linear DC Motor(LDM) is presented. Recently LDM has been used to obtain the fine results of the dynamic characteristic for straightly moving condition. The I-PD control algorithm has a robust response to force disturbance. The effectiveness of I-PD is shown by simulations and comparison with PID.

  • PDF

The Design of an Improved ZCZVS Resonant Type Converter by Digital I-PD Phase-shift Controller (디지털 I-PD 위상 쉬프트 제어기를 가진 개선된 영전류.영전압 스위칭 공진형 컨버터의 설계)

  • Kim, Young-Moon;Ahn, In-Mo;Kim, Hae-Jae;Shin, Dong-Ryul;Kim, Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.66-70
    • /
    • 2000
  • This paper deal with a design and a constant output power control of Zero Current Zero Voltage Switching(ZCZVS) resonant type DC-DC converter by a digital I-PD phase shift controller. When the DC-DC converter for a high density and a high effect control is operated in high speed switching, the switching loss and switching stress of the switching devices are increased. So, the ZCZVS method, which has the phase shift control with the digital I-PD controller, must be use in order to reduce its. And the constant output power voltage that controlled by the digital I-PD controller tracks a reference without steady state error in variable input voltage. The validity of control strategy that proposed is verified experimental results by the Digital Signal Processor TMS320C32.

  • PDF

The Effect of EA and TENS on GAP-43 Expression in Spinal Cord after Rat Sciatic Nerve Crush Injury (전침자극과 경피신경전기자극이 흰쥐 좌골신경 압좌손상 후 척수내 GAP-43 발현에 미치는 영향)

  • Lee, Hyun-Min;Park, Eun-Se;Kim, Min-Hee;Kim, Souk-Boum;Kim, Dong-Hyun;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • Purpose: The purpose of this study was to identify the effect of electroacupuncture(EA) and transcutaneous electric nerve stimulation(TENS) after sciatic nerve crush injury in rats. Methods: The EA for experimental group I (Exp I, n=15) and TENS for experimental group II (Exp II, n=15) was applied from post-injury day(PD) 1 to PD 14 after sciatic nerve injury using low frequency stimulator that gave electrical stimulation(15min/60Hz). In order observe the effect of EA and TENS, this study examined GAP-43 expression in rat lumbar spinal cord at the PD 1, PD 7 and PD 14. In addition, the stride length(SL) and toe out angle(TOA) were measured at the PD 7 and PD 4. Results; Exp I and Exp II had higher GAP-43 immunoreactivity than control group(PD 1, 7, 14). The SL of Exp I and Exp II were significantly higher than control group(PD 7, 14). The TOA of Exp I and Exp II were significantly lower than control group(PD 7, 14). Conclusion: EA and TENS application increased motor nerve recovery and expression of GAP-43 immunoreactivity after sciatic nerve crush injury. Therefore effect of TENS and EA had similar effect on nerve regeneration and functional recovery.

  • PDF

A learning control of DC servomotor using neural network

  • Kawabata, Hiroaki;Yamada, Katsuhisa;Zhong, Zhang;Takeda, Yoji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.703-707
    • /
    • 1994
  • This paper proposes a method of learning control in DC servomotor using a neural network. First we estimate the pulse transfer function of the servo system with an unknown load, then we determine the best gains of I-PD control system using a neural network. Each time the load changes, its best gains of the I-PD control system is computed by the neural network. And the best gains and its pulse transfer function for the case are stored in the memory. According the increase of the set of gains and its pulse transfer function, the learning control system can afford the most suitable I-PD gains instantly.

  • PDF

Influence of Neuromuscular Electrical Stimulation on MEF2C and VEGF Expression of Neonatal Rat Skeletal Muscle During Suspension Unloading (신경근전기자극이 체중 부하를 제거한 신생 흰쥐 골격근 조직의 MEF2C 및 VEGF 발현에 미치는 영향)

  • Koo, Hyun-Mo;Lee, Sun-Min
    • Physical Therapy Korea
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • The aim of this study was to identify the effect of suspension unloading (SU) and electrical stimulation upon the development of neonatal muscular system. For this study, the neonatal rats were randomly divided into three groups: a control group, an experimental group I, and an experimental group II. The SU for experimental group I and II was applied from postnatal day (PD) 5 to PD 30. The electrical stimulation for soleus muscle of experimental group IIwas applied from PD 16 to PD 30 using neuromuscular electrical stimulation (NMES), which gave isometric contraction with 10 pps for 30 minutes twice a day. In order to observe the effect of SU and ES, this study observed myocyte enhancer factor 2C (MEF2C) and vascular endothelial growth factor (VEGF) immunoreactivity in the soleus muscles at PD 15 and PD 30. In addition, the motor behavior test was performed through footprint analysis at PD 30. The following is the result. At PD 15, the soleus muscles of experimental group Iand II had significantly lower MEF2C, VEGF immunoreactivity than the control group. It proved that microgravity conditions restricted the development of the skeletal muscle cells at PD 15. At PD 30, soleus muscles of the control group and experimental group II had significantly higher MEF2C, VEGF, immunoreactivity than experimental group I. It proved that the NMES facilitated the development of the skeletal muscle cells. At PD 30, it showed that SU caused the decrease in stride length of parameter of gait analysis and an increase in toe-out angle, and that the NMES decreased these variations. These results suggest that weight bearing during neonatal developmental period is essential for muscular development. They also reveal that NMES can encourage the development of muscular systems by fully supplementing the effect of weight bearing, which is an essential factor in the neonatal developmental process.

  • PDF