Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.5
/
pp.13-22
/
2004
Because video sequence consists of dynamic objects in nature, the object motion in video is an effective feature in describing the contents of video sequence and motion feature plays an important role in video retrieval. In this paper, we propose a method that converts motion vectors (MVs) to a uniform set on MPEG coded domain, independent of the frame type and the direction of prediction, and utilizes these normalized MVs (N-MVs) as motion descriptor to understand video contents. We describe a frame-type independent representation of the various types of frames presented in an MPEG video in which all frames can be considered equivalently, without full-decoding. In the experiments, we show that the proposed method is better than the conventional one in terms of performance.
As a demand for a new video coding standard having higher coding efficiency than the existing standards is growing, recently, MPEG and VCEG has been developing and standardizing the next-generation video coding project, named Versatile Video Coding (VVC). Many inter prediction techniques have been introduced to increase the coding efficiency, and among them, an adaptive motion vector resolution (AMVR) technique has contributed on increasing the efficiency of VVC. However, the best motion vector can only be determined by computing many rate-distortion costs, thereby increasing encoding complexity. It is necessary to reduce the complexity for real-time video broadcasting and streaming services, but it is yet an open research topic to reduce the complexity of AMVR. Therefore, in this paper, an efficient technique is proposed, which reduces the encoding complexity of AMVR. For that, the proposed method exploits a special VVC tree structure (i.e., multi-type tree structure) to accelerate the decision process of AMVR. Experiment results show that the proposed decision method reduces the encoding complexity of VVC test model by 10% with a negligible loss of coding efficiency.
Proposed is a speaker normalization method based on vector quantizer for continuous speech recognition (CSR) system in which no acoustic information is made use of. The proposed method, which is an improvement of the previously reported speaker normalization scheme for a simple digit recognizer, builds up a canonical codebook by iteratively training the codebook while the size of codebook is increased after each iteration from a relatively small initial size. Once the codebook established, the warp factors of speakers are estimated by comparing exhaustively the warped versions of each speaker's utterance with the codebook. Two sets of phones are used to estimate the warp factors: one, a set of vowels only. and the other, a set composed of all the Phonemes. A Piecewise linear warping function which corresponds to the estimated warp factor is adopted to warp the power spectrum of the utterance. Then the warped feature vectors are extracted to be used to train and to test the speech recognizer. The effectiveness of the proposed method is investigated by a set of recognition experiments using the TIMIT corpus and HTK speech recognition tool kit. The experimental results showed comparable recognition rate improvement with the formant based warping method.
This paper presents the extraction of a feature by motion vector for efficient content-based retrieval for digital video. in this paper, divided by general size block for the current frame by video, using BMA(block matching algorithm) for an estimate by block move based on a time frame. but in case BMA appeared on a different pattern fact of motion in the vector obtain for the BMA. solve in this a problem to application for full search method this method is detected by of on many calculations. I propose an alternative plan in this paper Limit the search region to $\pm$15 and search is a limit integer pixel. a result, in this paper is make an estimate motion vector in more accurately using motion vector in adjoin in blocks. however, refer to the block vector because occurrence synchronism. Such addition information is get hold burden receive to transmit therefore, forecasted that motion feature each block and consider for problems for establish search region. in this paper Algorithm based to an examination Motion Estimation method by for motion Compensation is proposed.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.18
no.1
s.116
/
pp.53-61
/
2007
This paper researches on the scheme superimposing the rotation phases over the pilot and data symbols in order to reduce the peak-to-average power ratio(PAPR) of the orthogonal frequency division multiplexing(OFDM) communication. The bandwidth and power efficiency are the main consideration. The phases of rotation vector are added to those of both pilot symbols and data symbols interlaying between any two pilot symbols in an OFDM block. Owing to this scheme the transmitter reduces the PAPR using the partial transmit sequences(PTS) and the receiver restores the data symbol utilizing the channel estimation of pilot symbols. Therefore, the bandwidth efficiency is accomplished by not using the further subcarriers for the reduction of PAPR and the enormous increase of bit error rate according to the receiving error of the side information, i.e. the phases of rotation vector, is prevented. In other words, both bandwidth-and power-efficiency and quality of communication performance can be improved.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2000.11b
/
pp.131-134
/
2000
본 논문에서는 스테레오 좌.우 영상간의 휘도 불균형 보정에 관한 연구를 수행하였다. 좌영상과 우영상의 관계를 선형관계 $(I_L = aI_R +b)$로서 가정하고 휘도 불균형을 보정한 기존 알고리듬(global balancing)의 문제점을 분석하였다. 또한 이러한 문제점을 해결하기 위한 방법으로 두 가지 방법을 제안하는데 히스토그램 균일화를 통한 방법과 영상의 국부적 특징을 이용하여 선형변환을 적용하는 방법(local balancing)이 보다 정확한 변이벡터를 찾는 전처리 과정임을 모의실험을 통해 검증하였다.
Expression of the baculovirus major envelope glycoprotein gene(gp64) is regulated by transcription from botha early and late promoters. To develop a transient expression vector under the control of gp64 gene promoter, the gp64 gene of Bombyx mori nucleopolyhedrovirus-K1(BmNPV-K1) was characterized. The gp64 gene was local-ized at EcoR I-Pst I 7.38-kb fragment of the BmNPV-K1 genome. The EcorR 1-Pst I 7.38-kb fragment was cloned and the nucleotide sequence of 2,277 bases including the coding region of gp64 gene was determined. Based on these results, transient expression vector using gp64 gene promoter was constructed and named as pBm64. E.coli lacZ gene was introduced onto pBm64 as a reporter gene and expressed transiently in B. mori 5(Bm 5) cells. The expression vector transfected into the cells was maintained stably for 1 to 5 days. In order to confirm the expression of the reporter gene by gp64 promoter, recombinant virus was constructed. The recombinant virus has two independent transcription units in opposite orientations with two promoters; gp64 and polyhedrin gene promoters each initiating transcription of $\beta$-galactosidase and polyhedrin, respectively. Polyhedra formation and expression of $\beta$-galactosidase in Bm5 cells infected with the recombinant virus were observed with phase contrast microscope and in situ staining.
This paper describes Linear Discriminant Analysis and common vector extraction for speech recognition. Voice signal contains psychological and physiological properties of the speaker as well as dialect differences, acoustical environment effects, and phase differences. For these reasons, the same word spelled out by different speakers can be very different heard. This property of speech signal make it very difficult to extract common properties in the same speech class (word or phoneme). Linear algebra method like BT (Karhunen-Loeve Transformation) is generally used for common properties extraction In the speech signals, but common vector extraction which is suggested by M. Bilginer et at. is used in this paper. The method of M. Bilginer et al. extracts the optimized common vector from the speech signals used for training. And it has 100% recognition accuracy in the trained data which is used for common vector extraction. In spite of these characteristics, the method has some drawback-we cannot use numbers of speech signal for training and the discriminant information among common vectors is not defined. This paper suggests advanced method which can reduce error rate by maximizing the discriminant information among common vectors. And novel method to normalize the size of common vector also added. The result shows improved performance of algorithm and better recognition accuracy of 2% than conventional method.
Journal of the Korea Society of Computer and Information
/
v.18
no.9
/
pp.131-138
/
2013
In this paper, I propose and evaluate the method that classifies emotional type of characters with their emotional words. Emotional types are classified as three types such as positive, negative and neutral. They are selected by classification of emotional words that characters speak. I propose the method to extract emotional words based on WordNet, and to represent as emotional vector. WordNet is thesaurus of network structure connected by hypernym, hyponym, synonym, antonym, and so on. Emotion word is extracted by calculating its emotional distance to each emotional category. The number of emotional category is 30. Therefore, emotional vector has 30 levels. When all emotional vectors of some character are accumulated, her/his emotion of a movie can be represented as a emotional vector. Also, thirty emotional categories can be classified as three elements of positive, negative, and neutral. As a result, emotion of some character can be represented by values of three elements. The proposed method was evaluated for 12 characters of four movies. Result of evaluation showed the accuracy of 75%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.