• Title/Summary/Keyword: Hystresis loss

Search Result 2, Processing Time 0.014 seconds

A Study on the Estimation of Temperature in Track Components due to Hystresis Loss. (히스테리시스 손실에 의한 괘도부품의 온도 추정에 관한 연구)

  • Kim, H.J.;Kim, B.T.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.48-55
    • /
    • 2001
  • In many applications. rubber components undergo dynamic stresses or deformations of fairly large magnitude. Since rubbers are not fully elastic, a part of the mechanical energy is converted into heat due to the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build up. i. e. internal temperature rise. The purpose of this paper is to predict temperature rise caused by the hysteresis loss, in a rubber pad subjected to complex dynamic deformation. In this unsteady thermal analysis, the temperature distributions of track components are displayed in contour shapes and the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.

  • PDF

Study on the Heat Generation of Tank Track Rubbers under the Consideration of the Road Conditions (노면상태를 고려한 전차 궤도 고무의 열발생에 관한 연구)

  • 김병탁;김광희;윤문철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.166-175
    • /
    • 2002
  • Tank track rubbers, which undergo dynamic stresses and strains under various road conditions, leads to a result of considerable internal temperature rise due to the heat generation. Since rubber materials are not fully elastic, a part of the mechanical energy is converted into heat because of the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build-up, i.e. internal temperature rise which, if excessive, exerts a bad influence upon the performance and the life of the tank track rubbers. The purpose of this paper is to predict temperature distributions of the rubber components off tank track subjected to complex dynamic loads under various read conditions. In steady state analysis temperature fields are displayed in contour shapes, and in unsteady analysis the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.