• Title/Summary/Keyword: Hysteresis motor

Search Result 172, Processing Time 0.03 seconds

Torque Ripple Reduction of Switched Reluctance Motors for the Vehicle (차량용 스위치드 리럭턴스 전동기의 토오크 리플저감)

  • Eom, K.M.;Song, B.S.;Kim, Y.C.;Ahn, J.J.;Lee, J.H.;Won, C.Y.;Kim, D.G.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1120-1122
    • /
    • 2000
  • Switched Reluctance Motors(SRM) attract much attention in motor because they are reliable and inexpensive. With advance in power electronics and high-speed processors, the performance of SRM has been enhanced greatly But because of its geometric and magnetic structure, the switched reluctance motor naturally creates torque ripples during the commutations of the currents from a supplied phase to an other one. This paper presents the torque ripple reduction using hysteresis current control among of current control techniques.

  • PDF

Variable Speed Drives of Induction Motor for Traction Application with Modified Sliding Mode Control

  • Ryoo, Hong-Je;Kim, Jong-Soo;Rim, Geun-Hie;Dragos Ovidiu Kisck;Won, Chung-Yuen
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • In this paper it is proposed an advanced modified sliding mode control of a rotor field oriented control of induction motor. The application of this unconventional control has very good results, such as disturbance rejection and nice dynamic properties. Stability can be guaranteed even in the worst situation. A conventional "sliding mode" controller is characterised by fast switching control signal, which causes the chattering of the drive system. To overcome this problem, a modified law is used, by introducing a hysteresis band and a continuous control, which modifies the conventional law. The control is accomplished with dual TMS320C44 floating-point digital signal processor. The validity of the proposed method was verified by experiment on the propulsion system simulator, used for the development of Korean High-Speed Railway Train(KHSRT).in(KHSRT).

  • PDF

Direct Torque Control of Induction Motor Using Flux & Torque Slop (자속 및 토오크 기울기를 이용한 유도전동기의 직접토오크 제어)

  • Choi, Youn-Ok;Choi, Mon-Han;Jeong, Sam-Young;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1137
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional BTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(BTC) schemes are proposed. Those schemes are based on the torque slope and and flux to reduce the torque ripple.

  • PDF

A Sensorless Position Control System of SPMSM with Direct Torque Control (직접 토크제어에 의한 센서리스 SPMSM의 위치 제어 시스템)

  • Kim Min-Ho;Kim Nam-Hun;Kim Dong-Hee;Kim Min-Huei;Hwang Don-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.397-400
    • /
    • 2001
  • This paper presents a implementation of digital sensorless position control system of surface permanent-magnet synchronous motor (SPMSM) drive with a direct torque control (DTC). The system are stator flux and torque observer of stator flux feedback control model that inputs are current and voltage sensing of motor terminal with estimated rotor angle for a low speed operating area, two hysteresis band controllers, an optimal switching look-up table, rotor speed estimator, and IGBT voltage source inverter by using fully integrated control software. The developed sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0 (kW) purposed servo drive SPMSM.

  • PDF

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin;Huang, Jin;Kang, Min;Li, Bingnan;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.899-907
    • /
    • 2014
  • This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

Dead Time Compensation and Polarity Check of Phase Currents Based on Programmable Low-pass Filter for Automotive Electric Drive Systems (자동차 전동 시스템을 위한 Programmable 저역 통과 필터 기반의 상전류 극성 판단 및 데드타임 보상)

  • Choi, Chinchul;Lee, Kangseok;Lee, Wootaik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.23-30
    • /
    • 2014
  • This paper proposes a dead time compensation method for an AC motor drive using phase current polarity information which is detected based on a digital programmable low-pass filter (PLPF). The polarity detection using the PLPF is an alternative solution of a conventional method which uses a general low-pass filter (LPF) and hysteresis bands in order to avoid jittering due to noises. The PLPF not only adjusts its cutoff frequency according to the synchronous frequency of AC motors but also eliminates a gain attenuation and phase delay which are main problems of the general LPF. Through the PLPF, a fundamental component signal without gain and phase distortions is extracted from the measured raw current signal with noise. By use of the fundamental component, the polarity of current is effectively detected by reducing the hysteresis band. Finally, the proposed method compensates the dead time effects by adding or subtracting average voltage value to voltage references of the controller according to the detected current polarity information. The proposed compensation method is experimentally verified by compared with the conventional method.

A Study on the Sensorless Speed Control of Induction Motor using Direct Torque Control (직접토크 제어를 이용한 유도전동기의 센서리스 속도제어에 관한 연구)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Jong-Su;Kim, Yoon-Sik;Lee, Sung-Gun;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1261-1267
    • /
    • 2009
  • The Direct Torque Control[DTC] controls torque and flux by restricting the flux and torque errors within respective hysteresis bands, and motor torque and flux are controlled by the stator voltage space vector using optimum inverter switching table. And the Current Error Compensation method is on the basis of compensating current difference between the induction motor and its numerical model, in which the identical stator voltage is supplied for both the actual motor and the model so that the gaps between stator currents of the two can be forced to decay to zero as time proceeds. Consequently, the rotor speed approaches to the model speed, namely, setting value and the system can control motor speed precisely. This paper proposes a new sensorless speed control of induction motor using DTC and Current Error Compensation, which requires neither shaft encoder, speed estimator nor PI controllers. And through computer simulation, confirm effectiveness of proposed method.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 위치제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Choe, Gyeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator fluff observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at $\pm$20 and $\pm$2000 rpm. The developed digitally high-performance motion control system+ are shown a good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.