• Title/Summary/Keyword: Hysteresis curve

Search Result 285, Processing Time 0.024 seconds

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

A SIMPLED MODEL FOR HIGHER ORDER SCANNING CURVES IN THE SOIL WATER CHARACTERISTIC FUNCTION (토양수분 특성함수의 고차 SCANNING 커브에 대한 간략한 모델)

  • 정상옥
    • Water for future
    • /
    • v.21 no.2
    • /
    • pp.193-201
    • /
    • 1988
  • A simplified model for higher order scanning curves in the soil water characteristic function is suggested. The conceptual hysteresis models developed by $Mualem_{8,9}$ are simplied for higher order scanning curves. Higher order drying curves are regarded as primary drying curves and the last wetting reversal point is assumed to be on the main wetting curve by moving that point vertically downward. For the higher order wetting curves, it is assumed that these curves can be regarded as primary curves and the last wetting reversal point sits on the imaginary main drying curve which passes through the last wetting reversal point. The water content computed from the simplified model are compared with those obtained from Mualem's original model for second order scanning curves. It is found that absolute differences between the two methods aree relatively small and the simplified model always underestimates for higher order drying curves while it overestimates for higher order wetting curves. Hence, those two tend to compensate each other for repeated drying-wetting processes. The simplified model approximates higher order scanning curves well and reduces computation considerably.

  • PDF

Dynamic Interaction of Single and Group Piles in Sloping Ground (경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용)

  • Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.5-15
    • /
    • 2020
  • Dynamic behavior of pile foundation is significantly influenced by the dynamic interaction between soil and pile. Especially, in the sloping ground, the soil-pile interaction becomes very complex due to different resistance according to loading direction, soil residual displacement and so on. In this study, dynamic centrifuge tests were performed on the piles in the sloping ground. The model structures consisted of a single pile and 2×2 group pile. The soil-pile interaction has been investigated considering various conditions such as slope, single and group piles, and amplitude of input motions. The phase differences between soil and pile displacement and dynamic p-y curves were evaluated. The analysis results showed that the pile behavior was largely influenced by the kinematic forces between soil and pile. In addition, the dynamic p-y curve showed the complex hysteresis loop due to the effect of slope, residual displacement, and kinematic forces.

Torque Curve Shapes of Simple Uniaxial Magnetic Materials (단순 일축 비등방성 자성체의 돌림힘 곡선의 개형)

  • Hur, Jeen;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.34-41
    • /
    • 1998
  • We have theoretically investigated torque curve shapes of simple uniaxial magnetic materials by considering conditions for round peaks to exist. These conditions are functions of an applied field, anisotropy field, ans lowest critical field $h_0$ for a domain wall to move or nucleate. The peak having a height of 2h appears when h is lower than h$_1$, the peak having a height of 1 appears when h is higher than h$_2$, ans two peaks having heights of 1 and -1 appear when h is higher than h$_3$. It was found that torque curves of simple uniaxial magnetic materials could be classified into 8 distinct types depending on the existence of hysteresis, the number of the round peaks, and the reversal mechanisms. Simple uniaxial magnetic materials also found to be classifed into the 5 groups depending on $h_0$.

  • PDF

Stress and Junction Leakage Current Characteristics of CVD-Tungsten (CVD 텅스텐의 응력 및 접합 누설전류 특성)

  • 이종무;최성호;이종길
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.176-182
    • /
    • 1992
  • t-Stress and junction leakage current characteristics of CVD-tungsten have been investigated. Stressversus continuous annealing temperature plot. shows hysteresis curve where the stress level of the cooling curveis higher than that of the heating curve. It is found that the thermal and intrinsic stress of tungsten film depositedby SiH4 reduction is higher than that by Hz reduction.The tungsten film deposited by SiHl reduction is in the tensile stress state below 700"Cnd the stress ofthe film decreses with increasing annealing temperature. The stress state changes into compressive stress atabout 700"Cnd the compressive stress increases rapidly with increasing temperature.Leakage current of the n+/p diode increases rapidly especially in the range of 400-450$^{\circ}$C with increasingdeposition temperature of the CVD-W by SiH4 reduction, which is due to the Si consumption by W encroachment.On the other hand leakage current of the n+/p diode slightly increases with increasing SiH4/WF6 ratio.h increasing SiH4/WF6 ratio.

  • PDF

Effects of reversing the coiling direction on the force-deflection characteristics of nickel-titanium closed-coil springs

  • Park, Hwan-Hyung;Jung, Suk-Hwan;Yoon, Juil;Jee, Kwang Koo;Han, Jun Hyun;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.49 no.4
    • /
    • pp.214-221
    • /
    • 2019
  • Objective: To investigate the effects of reversing the coiling direction of nickel-titanium closed-coil springs (NiTi-CCSs) on the force-deflection characteristics. Methods: The samples consisted of two commercially available conventional NiTi-CCS groups and two reverse-wound NiTi-CCS groups (Ormco-Conventional vs. Ormco-Reverse; GAC-Conventional vs. GAC-Reverse; n = 20 per group). The reverse-wound NiTi-CCSs were directly made from the corresponding conventional NiTi-CCSs by reversing the coiling direction. Tensile tests were performed for each group in a temperature-controlled acrylic chamber ($37{\pm}1^{\circ}C$). After measuring the force level, the range of the deactivation force plateau (DFP) and the amount of mechanical hysteresis (MH), statistical analyses were performed. Results: The Ormco-Reverse group exhibited a significant shift of the DFP end point toward the origin point (2.3 to 0.6 mm), an increase in the force level (1.2 to 1.3 N) and amount of MH (1.0 to 1.5 N) compared to the Ormco-Conventional group (all p < 0.001), which indicated that force could be constantly maintained until the end of the deactivation curve. In contrast, the GAC-Reverse group exhibited a significant shift of the DFP-end point away from the origin point (0.2 to 3.3 mm), a decrease in the force level (1.1 to 0.9 N) and amount of MH (0.6 to 0.4 N) compared to the GAC-Conventional group (all p < 0.001), which may hinder the maintenance of force until the end of the deactivation curve. Conclusions: The two commercially available NiTi-CCS groups exhibited different patterns of change in the force-deflection characteristics when the coiling direction was reversed.

Test for the influence of socket connection structure on the seismic performance of RC prefabricated bridge piers

  • Yan Han;Shicong Ding;Yuxiang Qin;Shilong Zhang
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In order to obtain the impact of socket connection interface forms and socket gap sizes on the seismic performance of reinforced concrete (RC) socket prefabricated bridge piers, quasi-static tests for three socket prefabricated piers with different column-foundation connection interface forms and reserved socket gap sizes, as well as to the corresponding cast-in-situ reinforced concrete piers, were carried out. The influence of socket connection structure on various seismic performance indexes of socket prefabricated piers was studied by comparing and analyzing the hysteresis curve and skeleton curve obtained through the experiment. Results showed that the ultimate failure mode of the socket prefabricated pier with circumferential corrugated treatment at the connection interface was the closest to that of the monolithic pier, the maximum bearing capacity was slightly less than that of the cast-in-situ pier but larger than that of the socket pier with roughened connection interface, and the displacement ductility and accumulated energy consumption capacity were smaller than those of socket piers with roughened connection interface. The connection interface treatment form had less influence on the residual deformation of socket prefabricated bridge piers. With the increase in the reserved socket gap size between the precast pier column and the precast foundation, the bearing capacity of the prefabricated socket bridge pier component, as well as the ductility and residual displacement of the component, would be reduced and had unfavorable effect on the energy dissipation property of the bridge pier component.

Stability Analysis on Unsaturated Gneiss Weathered Soil Slopes Considering Wetting Path Soil-Water Characteristic Curve (습윤경로 함수특성곡선을 고려한 불포화 편마풍화토 사면의 안정해석)

  • Park, Seong-Wan;Shin, Gil Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.191-198
    • /
    • 2009
  • It has been reported in Korea that surface slope failures in weathered soil are mainly caused by downward infiltration due to rainfall. These failures are triggered by the deepening of the wetting band in soils accompanied by a decrease in matric suction induced by the water infiltration. So, a need exists that these trends of wetting path in gneiss weathered soils, which is commonly found in Korea, are assessed by phenomenological approach. In this paper, numerical analyses of unsaturated soil slope under rainfall conditions are presented based on the wetting path soil-water characteristic curve in the laboratory. As the field SWCC matches well with the wetting path of the laboratory SWCC from the literatures, it seems reasonable to adopt the laboratory wetting SWCC as an upper boundary condition in the assessment of unsaturated slope instability.

Estimation on Unsaturated Characteristic Curves of Tailings obtained from Waste Dump of Imgi Mine in Busan (부산 임기광산 폐석적치장 광미의 불포화 특성곡선 산정)

  • Song, Young-Suk;Kim, Kyeong-Su;Jeong, Sueng-Won;Lee, Choon-Oh
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • To investigate the unsaturated characteristics of the tailings obtained from the waste dump at Imgi mine, matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. Based on the measured result, Soil Water Characteristic Curves (SWCC) were estimated by van Genuchten model. According to the unsaturated soil classification method, the tailings of the waste dump correspond to clayey sand. As a result of Suction Stress Characteristic Curve (SSCC) by Lu and Likos model, SSCC has a shape of S which is similar to SWCC. The hysteresis phenomenon occurred in SSCCs, which means the suction stress of drying path is larger than that of wetting path in the same effective degree of saturation. The effective stress of unsaturated soil is equal to that of saturated soil when matric suction is less than Air Entry Value (AEV). However, the effective stress of unsaturated soil is larger than that of saturated soil when matic suction is more than AEV. Meanwhile, unsaturated hydraulic conductivity by van Genuchten model decreased with increasing matric suction, and the hydraulic conductivity of drying path is larger than that of wetting path.

Prediction of Soil-water Characteristic Curve and Unsaturated Permeability Coefficient of Reclaimed Ground (불포화 준설매립 지반의 흙-수분 특성곡선 및 불포화 투수계수 예측)

  • 신은철;이학주;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.109-120
    • /
    • 2004
  • There has been outstanding research on the soil-water characteristic curves of unsaturated soils over the past several decades. Unfortunately, unsaturated soil mechanics has not been considered as an important factor in Korea. In this paper, laboratory test and numerical analysis(SoilVision Professional ver 3.04) were performed to investigate the prediction method of soil-water characteristic curve and unsaturated permeability coefficient in reclaimed ground. The pressure cell, desiccator, and tensiometor tests were conducted on three types of reclaimed soils(dredged soil, sand, weathered granite soil). Numerical analysis was executed to compare the results with the laboratory test results and also compared with the results of each prediction method. Based on the laboratory test, three different types of soils have shown different soil-water characteristic curves. The hysteresis fir these soils is clearly defined. As a result of numerical analysis, Fredlund & Xing's method and Fredlund & Wilson's model proved to worke out well for reclaimed ground soils in Korea. Also, predicting method based on the soil-water characteristic curves from the particle-size distributions is flirty reliable for estimating unsaturated permeability coefficient.