• Title/Summary/Keyword: Hysteresis Damping Model

Search Result 45, Processing Time 0.027 seconds

The effect of rubber bumper in order to suggest a new equation to calculate damping ratio, subjected building pounding during seismic excitation

  • Khatami, S.M.;Naderpour, H.;Mortezaei, A.R.;Barros, R.C.;Maddah, M.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2022
  • One of the objectives to prevent building pounding between two adjacentstructures is to considerseparation distance or decrease relative displacement during seismic excitation. Although the majority of building codes around the world have basically suggested some equations or approximately recommended various distances between structuresto avoid pounding hazard, but a lot of reportsin zone of pounding have obviously shown thatsafety situation or economic consideration are not always provided due to the collisions between buildings and the cost of land, respectively. For this purpose, a dynamic MDOF model by having base isolation system is numerically considered and using various earthquake records, relative displacements are mathematically investigated. Different equations to determine the value of damping ratio are collected and the results of evaluations are listed for comparison among them to present a new equation for determination of impact damping ratio. Presented equation is depends significantly on impact velocity before and after impact based on artificial neural network, which the accuracy of them is investigated and also confirmed. In order to select the optimum equation, hysteresisloop of impact between base of building and rubber bumper is considered and compared with the hysteresis loop of each impact, calculated by different equations. Finally, using representative equation, the effect of thickness, number and stiffness of rubber bumpers are numerically investigated. The results of analysis indicate that stiffness and number of bumpers have significantly affected in zone of impact force while the thickness of bumpers have not shown significant influence to calculate impact force during earthquake. For instance, increasing the number of bumpers, gap size between structures and also the value of stiffness is caused to decrease impact force between models. The final evaluation demonstrates that bumpers are able to decrease peak lateral displacement of top story during impact.

Three Axis Disk Spring Damper Containing Wedge System (웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구)

  • Choi, Myung-Jin;Jeong, Ji-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • This study pertains to damping device to reduce vibrational responses and shocks in multi-directions. To enhance the capability of disk spring damper which works for vertical vibration and shock, a multi-directional damper is proposed, which contains wedge system as well as disk spring stack. Wedge system converts horizontal load into vertical load. A mathematical model is proposed and investigated for the nonlinear behaviors of the disc spring damper containing wedge system. The results accord with the experimental results. Equivalent viscous damping in vertical and horizontal directions are found based upon energy dissipated.

  • PDF

Investigations of different steel layouts on the seismic behavior of transition steel-concrete composite connections

  • Qi, Liangjie;Xue, Jianyang;Zhai, Lei
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • This article presents a comparative study of the effect of steel layouts on the seismic behavior of transition steel-concrete composite connections, both experimental and analytical investigations of concrete filled steel tube-reinforced concrete (CFST-RC) and steel reinforecd concrete-reinforced concrete (SRC-RC) structures were conducted. The steel-concrete composite connections were subjected to combined constant axial load and lateral cyclic displacements. Tests were carried out on four full-scale connections extracted from a real project engineering with different levels of axial force. The effect of steel layouts on the mechanical behavior of the transition connections was evaluated by failure modes, hysteretic behavior, backbone curves, displacement ductility, energy dissipation capacity and stiffness degradation. Test results showed that different steel layouts led to significantly different failure modes. For CFST-RC transition specimens, the circular cracks of the concrete at the RC column base was followed by steel yielding at the bottom of the CFST column. While uncoordinated deformation could be observed between SRC and RC columns in SRC-RC transition specimens, the crushing and peeling damage of unconfined concrete at the SRC column base was more serious. The existences of I-shape steel and steel tube avoided the pinching phenomenon on the hysteresis curve, which was different from the hysteresis curve of the general reinforced concrete column. The hysteresis loops were spindle-shaped, indicating excellent seismic performance for these transition composite connections. The average values of equivalent viscous damping coefficients of the four specimens are 0.123, 0.186 and 0.304 corresponding to the yielding point, peak point and ultimate point, respectively. Those values demonstrate that the transition steel-concrete composite connections have great energy dissipating capacity. Based on the experimental research, a high-fidelity ABAQUS model was established to further study the influence of concrete strength, steel grade and longitudinal reinforcement ratio on the mechanical behavior of transition composite connections.

Analysis of Dynamic Characteristics for a Free-Piston Vuilleumier Heat Pump Based on the Isothermal Model (등온모델에 의한 자유행정 Vuilleumier열펌프의 동특성 해석)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.467-478
    • /
    • 1994
  • This paper deals with dynamic behaviors of a free-piston Vuilleumier heat pump system, which are characterized by stroke of each diplacer/stroke ratio, operating frequency and phase angle. Based on the Isothermal Model, basic equations of motion are derived and linearized. In particular, dependence of damping coefficients of the dynamic parameters are taken into account in the formulation, which does not bring additional difficulties in the analysis. In order to investigate effects of design conditions on the dynamic parameters are taken into account in the formulation, which does not bring additional difficulties in the analysis. In order to investigate effects of design conditions on the dynamic characteristics, calculations are performed for the prototype made by Schulz and Thomas and results are qualitatively compared with their data obtained from the analysis as well as the experiment. It appears that they made a mistake in evaluating the hysteresis loss of the gas spring in their analysis. And, the present results show a better agreement with their experimental data than those by their own analysis. Although there are some unresolved aspects such as frequency variations with respect to the mean pressure and the hot space temperature, it is expected that the present analysis may be an effective tool for prediction of dynamics of a free- pistion VM machine at the preliminary design stage.

Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure

  • Ebrahimi, Saeed;Salahshoor, Esmaeil;Moradi, Shapour
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.691-702
    • /
    • 2017
  • Clearances are essential for the assemblage of mechanisms to allow the relative motion between the joined bodies. This clearance exists due to machining tolerances, wear, material deformations, and imperfections, and it can worsen the mechanism performance when the precision and smoothly-working are intended. Energy is a subject which is less paid attention in the area of clearance. The effect of the clearance on the energy of a flexible slider-crank mechanism is investigated in this paper. A clearance exists in the joint between the slider and the coupler. The contact force model is based on the Lankarani and Nikravesh model and the friction force is calculated using the modified Coulomb's friction law. The hysteresis damping which has been included in the contact force model dissipates energy in clearance joints. The other source for the energy loss is the friction between the journal and the bearing. Initial configuration and crank angular velocity are changed to see their effects on the energy of the system. Energy diagrams are plotted for different coefficients of friction to see its influence. Finally, considering the coupler as a flexible body, the effect of flexibility on the energy of the system is investigated.

An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline (승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.105-111
    • /
    • 2008
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

  • PDF

A Study on the Dynamic Characteristics of Free-Friction Stroke Damper by Finite Element Method (유한요소법을 이용한 Free-Friction Stroke 댐퍼의 동특성 해석)

  • Ku, Hi-Chun;Lee, Jae-Wook;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1417-1426
    • /
    • 2009
  • Various types of damper are usually applied to reduce noise and vibration for mechanical systems. Especially, for washing machines, the free-friction stroke damper is installed. The behavior of the free-friction stroke damper has nonlinear characteristics such as hysteresis and viscoelastic properties because of its foam material. First of all, the dynamic experiments were carried out by using a MTS machine to find characteristics of the free-friction stroke damper. And the simulation model of the free-friction stroke damper and characteristics of a foam material were evaluated by using optimization technique. To make a good simulation model which can show the dynamic characteristics, it is important to understand the working mechanism of the damper. The Finite Element Method (FEM) technique can help us instinctively understand the damping phenomenon under operating conditions, because we can observe the condition of damper at every step in the simulation by using it. Also, by changing factors, we can comprehend the variation of characteristics of damper. So, in this paper, a study on the dynamic characteristics of free-friction stroke damper by FEM is focused on. Finally, the possibility which physical experiments can be replaced into simulations is shown.

An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline (승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory (차량 부품의 내구성 평가를 위한 가상시험실 구축)

  • Kim, Gi-Hoon;Kang, Woo-Jong;Kim, Dae-Sung;Ko, Woong-Hee;Lim, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

Dynamic Modeling of Semi-active Squeeze Mode MR Damper for Structural Vibration Control (구조물의 진동 제어를 위한 압착식 MR 감쇠기의 동적 모델링)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.172-180
    • /
    • 2009
  • Normally in order to build a semi-active control system equipped with MR damper, the dynamic modeling of the damper is required to numerically predict its dynamic damping force and also its behavioral characteristics. For the dynamic modeling of the MR damper, this paper attempts to predict and evaluate its dynamic behavior by applying specifically both a power model and a Bingham model. Dynamic loading tests were performed on the squeeze type of damper specially designed for this research, and force-displacement hysteresis loops confirmed the effectiveness of the damper as a semi-active control device. In the meantime, in order to evaluate the effectiveness of each model applied, the model parameter for each model was identified. On the basis of the parameter, we derived the error ratio of the force-velocity relationship curve and the dynamic damping force, which was contrasted and compared with the experimental results of the squeeze type of damper. Finally, the squeeze type of MR damper developed in this research was proved to be valid as a semi-active control device, and also the evaluation of the two dynamic models showed they were working fine so that they were likely to be easily utilized to numerically predict the dynamic characteristics of any dampers with MR fluid as well as the squeeze type of MR damper.