• Title/Summary/Keyword: Hyrtios species

Search Result 2, Processing Time 0.017 seconds

Bacterial Community Diversity Associated with Two Marine Sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis (남태평양에 서식하는 두 종의 해면 Hyrtios sp.와 Callyspongia sp.의 공생세균 군집의 다양성)

  • Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.255-261
    • /
    • 2010
  • The bacterial community structure associated with two marine sponges, Hyrtios sp. 604 and Callyspongia sp. 612 collected from the South Pacific Ocean were analyzed by 16S rDNA-denaturing gradient gel electrophoresis (DGGE). The phylogenetic analysis showed that the bacterial community associated with Hyrtios sp. 604 contained diverse bacterial groups such as Chloroflexi, Firmicutes, Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Acidobacteria. Callyspongia sp. 612 harbored Chloroflexi, Cyanobacteria, Alphaproteobacteria, and Gammaproteobacteria. Hyrtios sp. 604 belonging to genus Hyrtios known to produce natural products showed greater bacterial diversity than Callyspongia sp. 612. Phylum Actinobacteria was shown to be one of dominant bacterial groups in Hyrtios sp. 604. Although the same phyla of bacteria were found in both sponge species, the spongeassociated predominant bacterial groups differed between the two sponges with different chemical characteristics from the same geographical location. Uncultured bacteria represented over 90% of the bacteria diversity present in all bacterial communities of the sponges.

The Anti-Rotaviral and Anti-Inflammatory Effects of Hyrtios and Haliclona Species

  • Koh, Su-Im;Shin, Hea-Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.2006-2011
    • /
    • 2016
  • The marine sponges Hyrtios and Haliclona species, both of which are known to produce secondary bioactive metabolites, were used to extract 1304KO-327 and 1304KO-328. Such secondary metabolites are potentially antibacterial, antiviral, anti-inflammatory, antitumoral, antifungal, and antiplasmodial. In the present study, the effects of 1304KO-327 and 1304KO-328 were studied for their clinical and pathological importance. The cytotoxicity of 1304KO-327 and 1304KO-328 was assessed via MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on HT-29, Caco-2, and Raw 264.7 cells. Rotavirus-infected Caco-2 cells were used to prove the antiviral effects of the marine sponge extracts. The test results cogently proved that the virus-inhibiting effects of the sponge extracts improved with extract concentration. Anti-inflammatory effects of the marine sponge extracts were tested on Lipopolysaccharide-treated Raw 264.7 cells. Nitric oxide and cytokine were produced by treatment of the cells with LPS and the inhibiting effects of the sponge extracts on $IL-1{\beta}$ formation were investigated. This study found that the NO production was decreased dose dependently, and $IL-1{\beta}$ formation was significantly reduced by the marine sponge extracts.